We find transformations of variables which preserve the form of the equation
for the kernels of integral relations among solutions of the Heun equation.
These transformations lead to new kernels for the Heun equation, given by
single hypergeometric functions (Lambe-Ward-type kernels) and by products of
two hypergeometric functions (Erd\'elyi-type). Such kernels, by a limiting
process, also afford new kernels for the confluent Heun equation.Comment: This version was published in J. Phys. A: Math. Theor. 44 (2011)
07520