38 research outputs found

    EDA-BASED ESTIMATION OF VISUAL ATTENTION BY OBSERVATION OF EYE BLINK FREQUENCY

    Get PDF
    This paper describes the relationship between visual attention and eye blink frequency. In an experiment, we prompted the activation of a subject's visual attention and examined the influence of visual attention (as measured using electrodermal activity (EDA), which is meaningfully correlated with visual attention) on the subject's eye blink frequency. Experimental results show that engagement of visual attention decreased eye blink frequency and that when visual attention was not activated, eye blink frequency increased. Knowledge of this relationship provides a technique using EDA to objectively determining a subject's visual attention status

    Fluorescence and Bioluminescence Imaging of Angiogenesis in Flk1-Nano-lantern Transgenic Mice

    Get PDF
    Angiogenesis is important for normal development as well as for tumour growth. However, the molecular and cellular mechanisms underlying angiogenesis are not fully understood, partly because of the lack of a good animal model for imaging. Here, we report the generation of a novel transgenic (Tg) mouse that expresses a bioluminescent reporter protein, Nano-lantern, under the control of Fetal liver kinase 1 (Flk1). Flk1-Nano-lantern BAC Tg mice recapitulated endogenous Flk1 expression in endothelial cells and lymphatic endothelial cells during development and tumour growth. Importantly, bioluminescence imaging of endothelial cells from the aortic rings of Flk1-Nano-lantern BAC Tg mice enabled us to observe endothelial sprouting for 18 hr without any detectable phototoxicity. Furthermore, Flk1-Nano-lantern BAC Tg mice achieved time-lapse luminescence imaging of tumour angiogenesis in freely moving mice with implanted tumours. Thus, this transgenic mouse line contributes a unique model to study angiogenesis within both physiological and pathological contexts

    Implementation and Evaluation of a Wide-Range Human-Sensing System Based on Cooperating Multiple Range Image Sensors

    Get PDF
    A museum is an important place for science education for children. The learning method in the museum is reading exhibits and explanations. Museums are investing efforts to quantify interests using questionnaires and sensors to improve their exhibitions and explanations. Therefore, even in places where many people gather, such as in museums, it is necessary to quantify people's interest by sensing behavior of multiple people. However, this has not yet been realized. We aim to quantify the interest by sensing a wide range of human behavior for multiple people by coordinating multiple noncontact sensors. When coordinating multiple sensors, the coordinates and the time of each sensor differ. To solve these problems, coordinates were transformed using a simultaneous transformation matrix and time synchronization was performed using unified time. The effectiveness of this proposal was verified through experimental evaluation. Furthermore, we evaluated the actual museum content. In this paper, we describe the proposed method and the results of the evaluation experiment
    corecore