8 research outputs found

    Comprehensive genomic profiles of small cell lung cancer

    Get PDF
    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Dex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer

    Plasma metabolomics reveal alterations of sphingo- and glycerophospholipid levels in non-diabetic carriers of the transcription factor 7-like 2 polymorphism rs7903146

    Get PDF
    AIMS/HYPOTHESIS: Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene have been shown to display a powerful association with type 2 diabetes. The aim of the present study was to evaluate metabolic alterations in carriers of a common TCF7L2 risk variant. METHODS: Seventeen non-diabetic subjects carrying the T risk allele at the rs7903146 TCF7L2 locus and 24 subjects carrying no risk allele were submitted to intravenous glucose tolerance test and euglycemic-hyperinsulinemic clamp. Plasma samples were analysed for concentrations of 163 metabolites through targeted mass spectrometry. RESULTS: TCF7L2 risk allele carriers had a reduced first-phase insulin response and normal insulin sensitivity. Under fasting conditions, carriers of TCF7L2 rs7903146 exhibited a non-significant increase of plasma sphingomyelins (SMs), phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) species. A significant genotype effect was detected in response to challenge tests in 6 SMs (C16:0, C16:1, C18:0, C18:1, C24:0, C24:1), 5 hydroxy-SMs (C14:1, C16:1, C22:1, C22:2, C24:1), 4 lysoPCs (C14:0, C16:0, C16:1, C17:0), 3 diacyl-PCs (C28:1, C36:6, C40:4) and 4 long-chain acyl-alkyl-PCs (C40:2, C40:5, C44:5, C44:6). DISCUSSION: Plasma metabolomic profiling identified alterations of phospholipid metabolism in response to challenge tests in subjects with TCF7L2 rs7903146 genotype. This may reflect a genotype-mediated link to early metabolic abnormalities prior to the development of disturbed glucose tolerance

    Metabolites displaying the highest differences between TCF7L2 risk genotype carriers and controls.

    No full text
    <p>Concentration of total plasma SM, lysoPC and PC levels and selected SM-, lysoPC-, and PC-species in the fasting state, 35 minutes after the intravenous glucose bolus (t35) and during the steady state of the EH clamp (t240). (A) A significantly higher decease of total SM plasma levels was observed in TCF7L2 rs7903146 allele carriers (CT/TT genotype) at t35 (p=3.5E-03) and t240 (p = 4.4E-03) compared to CC genotype carriers. (B) SM-OH C24:1 plasma levels displayed the strongest difference between the genotype groups in delta t35 (p = 8.3E-04) and delta t240 (p = 5.4E-04). (C) Delta t35 and delta t240 of total lysoPC was significantly different between the genotype groups (p = 3.0E-03 and p = 3.6E-03). (D) LysoPC a C16:0 presented higher delta t35 (p = 2.6E-03) and deltat240 (p = 7.9E-04) in the subjects carrying the TCF7L2 rs7903146 risk allele. (E) The sum of all PCs did not present significant differences. (F) However, several PC species decreased significantly stronger in risk allele carriers. Delta t35 (p = 2.7E-03) and t240 (p = 4.2E-03) of PC ae C40:5 are given as a representative example. Data are given as mean and standard error of the mean. * = p ≤ 0.05 after correction for multiple testing.</p

    Response to an intravenous glucose challenge and insulin sensitivity as assessed by an EH clamp.

    No full text
    <p>(A) The insulin response was impaired at 1 (p = 0.03), 3 (p = 0.01) and 5 (p = 0.01) minutes after glucose challenge in the TCF7L2 group (CT/TT genotype) as compared to the control group (CC genotype). (B) The first phase insulin response (FPIR, sum of insulin values at 1 and 3 minutes) was significantly lower in TCF7L2 risk allele carriers. (C) TCF7L2 risk allele carriers had non-significantly lower proinsulin values after intravenous glucose challenge. (D) The proinsulin/insulin ratio was only slightly elevated in the TCF7L2 group. (E) ISI (insulin sensitivity index) displayed no significant difference in carriers of the TCF7L2 risk allele compared to controls. Data are given as mean and standard error of the mean in A, C and D.</p

    Fish oil, but not soy bean or olive oil enriched infusion decreases histopathological severity of acute pancreatitis in rats without affecting eicosanoid synthesis

    Full text link
    Different dietary fatty acids affect eicosanoid metabolism in different ways, thus influencing the pro- and anti-inflammatory balance of prostaglandins and leukotrienes. Therefore, we analyzed the impact of [n-3], [n-6], and [n-9] fatty acids on eicosanoid metabolism and histopathology in acute pancreatitis in rats. Seventy-five male Sprague-Dawley rats were randomized into five groups (n = 15). Group 1 underwent only laparotomy, while in groups, 2-5 pancreatitis was induced. Groups 1 and 2 were then given saline infusion, groups 3-5 received fat emulsion (group 3: rich in [n-6], group 4: rich in [n-9], group 5: rich in [n-3] fatty acids) for another 18 h. Infusion rich in [n-3] fatty acids significantly decreased histopathological severity of pancreatitis, compared to all other groups. There was no difference concerning the concentrations of prostaglandins and leukotrienes between all groups. Parenteral infusion rich in [n-3] fatty acids reduced histopathological severity of acute pancreatitis in rats without changing eicosanoid metabolism at the endpoint

    Comprehensive genomic profiles of small cell lung cancer

    No full text
    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Dex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer

    Comprehensive genomic profiles of small cell lung cancer

    No full text
    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Dex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer
    corecore