14 research outputs found

    The molecular dissection of TRIM25’s RNA-binding mechanism provides key insights into its antiviral activity

    Get PDF
    TRIM25 is an RNA-binding ubiquitin E3 ligase with central but poorly understood roles in the innate immune response to RNA viruses. The link between TRIM25’s RNA binding and its role in innate immunity has not been established. Thus, we utilized a multitude of biophysical techniques to identify key RNA-binding residues of TRIM25 and developed an RNA-binding deficient mutant (TRIM25-m9). Using iCLIP2 in virus-infected and uninfected cells, we identified TRIM25’s RNA sequence and structure specificity, that it binds specifically to viral RNA, and that the interaction with RNA is critical for its antiviral activity

    iCLIP: Protein-RNA interactions at nucleotide resolution.

    Get PDF
    RNA-binding proteins (RBPs) are key players in the post-transcriptional regulation of gene expression. Precise knowledge about their binding sites is therefore critical to unravel their molecular function and to understand their role in development and disease. Individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) identifies protein-RNA crosslink sites on a genome-wide scale. The high resolution and specificity of this method are achieved by an intramolecular cDNA circularization step that enables analysis of cDNAs that truncated at the protein-RNA crosslink sites. Here, we describe the improved iCLIP protocol and discuss critical optimization and control experiments that are required when applying the method to new RBPs

    Insights into the design and interpretation of iCLIP experiments

    Get PDF
    Abstract Background Ultraviolet (UV) crosslinking and immunoprecipitation (CLIP) identifies the sites on RNAs that are in direct contact with RNA-binding proteins (RBPs). Several variants of CLIP exist, which require different computational approaches for analysis. This variety of approaches can create challenges for a novice user and can hamper insights from multi-study comparisons. Here, we produce data with multiple variants of CLIP and evaluate the data with various computational methods to better understand their suitability. Results We perform experiments for PTBP1 and eIF4A3 using individual-nucleotide resolution CLIP (iCLIP), employing either UV-C or photoactivatable 4-thiouridine (4SU) combined with UV-A crosslinking and compare the results with published data. As previously noted, the positions of complementary DNA (cDNA)-starts depend on cDNA length in several iCLIP experiments and we now find that this is caused by constrained cDNA-ends, which can result from the sequence and structure constraints of RNA fragmentation. These constraints are overcome when fragmentation by RNase I is efficient and when a broad cDNA size range is obtained. Our study also shows that if RNase does not efficiently cut within the binding sites, the original CLIP method is less capable of identifying the longer binding sites of RBPs. In contrast, we show that a broad size range of cDNAs in iCLIP allows the cDNA-starts to efficiently delineate the complete RNA-binding sites. Conclusions We demonstrate the advantage of iCLIP and related methods that can amplify cDNAs that truncate at crosslink sites and we show that computational analyses based on cDNAs-starts are appropriate for such methods

    CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3â€Č processing

    No full text
    AAUAAA is the most highly conserved motif in eukaryotic mRNA polyadenylation sites and, in mammals, is specifically recognized by the multisubunit CPSF (cleavage and polyadenylation specificity factor) complex. Despite its critical functions in mRNA 3â€Č end formation, the molecular basis for CPSF–AAUAAA interaction remains poorly defined. The CPSF subunit CPSF160 has been implicated in AAUAAA recognition, but direct evidence has been lacking. Using in vitro and in vivo assays, we unexpectedly found that CPSF subunits CPSF30 and Wdr33 directly contact AAUAAA. Importantly, the CPSF30–RNA interaction is essential for mRNA 3â€Č processing and is primarily mediated by its zinc fingers 2 and 3, which are specifically targeted by the influenza protein NS1A to suppress host mRNA 3â€Č processing. Our data suggest that AAUAAA recognition in mammalian mRNA 3â€Č processing is more complex than previously thought and involves multiple protein–RNA interactions

    TDP-43 condensation properties specify its RNA-binding and regulatory repertoire

    Get PDF
    Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These “binding-region condensates” are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution

    Mechanistic insights into RNA binding and RNA-regulated RIG-I ubiquitination by TRIM25

    No full text
    TRIM25 is a ubiquitin E3 ligase active in innate immunity and cell fate decisions. Mounting evidence suggests that TRIM25â€Čs E3 ligase activity is regulated by RNAs. However, while mutations affecting RNA binding have been described, neither the precise RNA binding site has been identified nor which domains are involved. Here, we present biophysical evidence for the presence of RNA binding sites on both TRIM25 PRY/SPRY and coiled-coil domains, and map the binding site on the PRY/SPRY with residue resolution. Cooperative RNA-binding of both domains enhances their otherwise transient interaction in solution and increases the E3 ligase activity of TRIM25. We also show that TRIM25 not only binds RNA in mammalian cells but that interfering with RNA binding has an effect on cellular RIG-I ubiquitination

    Additional file 1: Figure S1. of Insights into the design and interpretation of iCLIP experiments

    No full text
    Quality control of the PTBP1 and eIF4A3 iCLIP. Figure S2. CL-motifs are enriched at cDNA deletions and cDNA-starts in U2AF2-iCLIP. Figure S3. Analysis of cDNA-starts and cDNA-ends at the start of Y-tracts. Figure S4. Constrained cDNA-ends in eIF4A3 iCLIP. Figure S5. The impact of cDNA-end constraints on cDNA-starts in eIF4A3 iCLIP. Figure S6. Distribution of cDNA sizes in the studied experiments. (PDF 5.42 mb

    Cellular differentiation state modulates the mRNA export activity of SR proteins

    No full text
    SR proteins function in nuclear pre-mRNA processing, mRNA export, and translation. To investigate their cellular dynamics, we developed a quantitative assay, which detects differences in nucleocytoplasmic shuttling among seven canonical SR protein family members. As expected, SRSF2 and SRSF5 shuttle poorly in HeLa cells but surprisingly display considerable shuttling in pluripotent murine P19 cells. Combining individual-resolution cross-linking and immunoprecipitation (iCLIP) and mass spectrometry, we show that elevated arginine methylation of SRSF5 and lower phosphorylation levels of cobound SRSF2 enhance shuttling of SRSF5 in P19 cells by modulating protein-protein and protein-RNA interactions. Moreover, SRSF5 is bound to pluripotency-specific transcripts such as Lin28a and Pou5f1/Oct4 in the cytoplasm. SRSF5 depletion reduces and overexpression increases their cytoplasmic mRNA levels, suggesting that enhanced mRNA export by SRSF5 is required for the expression of pluripotency factors. Remarkably, neural differentiation of P19 cells leads to dramatically reduced SRSF5 shuttling. Our findings indicate that posttranslational modification of SR proteins underlies the regulation of their mRNA export activities and distinguishes pluripotent from differentiated cells
    corecore