26 research outputs found

    In vitro and in vivo anticancer properties of a Calcarea carbonica derivative complex (M8) treatment in a murine melanoma model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma is the most aggressive form of skin cancer and the most rapidly expanding cancer in terms of worldwide incidence. Chemotherapeutic approaches to treat melanoma have had only marginal success. Previous studies in mice demonstrated that a high diluted complex derived from <it>Calcarea carbonica </it>(M8) stimulated the tumoricidal response of activated lymphocytes against B16F10 melanoma cells <it>in vitro</it>.</p> <p>Methods</p> <p>Here we describe the <it>in vitro </it>inhibition of invasion and the <it>in vivo </it>anti-metastatic potential after M8 treatment by inhalation in the B16F10 lung metastasis model.</p> <p>Results</p> <p>We found that M8 has at least two functions, acting as both an inhibitor of cancer cell adhesion and invasion and as a perlecan expression antagonist, which are strongly correlated with several metastatic, angiogenic and invasive factors in melanoma tumors.</p> <p>Conclusion</p> <p>The findings suggest that this medication is a promising non-toxic therapy candidate by improving the immune response against tumor cells or even induce direct dormancy in malignancies.</p

    Generation and Characterization of Stable Redox-Reporter Mammalian Cell Lines of Biotechnological Relevance

    Get PDF
    Cellular functions such as DNA replication and protein translation are influenced by changes in the intracellular redox milieu. Exogenous (i.e., nutrients, deterioration of media components, xenobiotics) and endogenous factors (i.e., metabolism, growth) may alter the redox homeostasis of cells. Thus, monitoring redox changes in real time and in situ is deemed essential for optimizing the production of recombinant proteins. Recently, different redox-sensitive variants of green fluorescent proteins (e.g., rxYFP, roGFP2, and rxmRuby2) have been engineered and proved suitable to detect, in a non-invasive manner, perturbations in the pool of reduced and oxidized glutathione, the major low molecular mass thiol in mammals. In this study, we validate the use of cytosolic rxYFP on two cell lines widely used in biomanufacturing processes, namely, CHO-K1 cells expressing the human granulocyte macrophage colony-stimulating factor (hGM-CSF) and HEK-293. Flow cytometry was selected as the read-out technique for rxYFP signal given its high-throughput and statistical robustness. Growth kinetics and cellular metabolism (glucose consumption, lactate and ammonia production) of the redox reporter cells were comparable to those of the parental cell lines. The hGM-CSF production was not affected by the expression of the biosensor. The redox reporter cell lines showed a sensitive and reversible response to different redox stimuli (reducing and oxidant reagents). Under batch culture conditions, a significant and progressive oxidation of the biosensor occurred when CHO-K1-hGM-CSF cells entered the late-log phase. Medium replenishment restored, albeit partially, the intracellular redox homeostasis. Our study highlights the utility of genetically encoded redox biosensors to guide metabolic engineering or intervention strategies aimed at optimizing cell viability, growth, and productivity

    HT-29 and Caco-2 Reporter Cell Lines for Functional Studies of Nuclear Factor Kappa B Activation

    No full text
    The NF-ÎșB is a transcription factor which plays a key role in regulating biological processes. In response to signals, NF-ÎșB activation occurs via phosphorylation of its inhibitor, which dissociates from the NF-ÎșB dimer allowing the translocation to the nucleus, inducing gene expression. NF-ÎșB activation has direct screening applications for drug discovery for several therapeutic indications. Thus, pathway-specific reporter cell systems appear as useful tools to screen and unravel the mode of action of probiotics and natural and synthetic compounds. Here, we describe the generation, characterization, and validation of human epithelial reporter cell lines for functional studies of NF-ÎșB activation by different pro- and anti-inflammatory agents. Caco-2 and HT-29 cells were transfected with a pNF-ÎșB-hrGFP plasmid which contains the GFP gene under the control of NF-ÎșB binding elements. Three proinflammatory cytokines (TNF-α, IL-1ÎČ, and LPS) were able to activate the reporter systems in a dose-response manner, which corresponds to the activation of the NF-ÎșB signaling pathway. Finally, the reporter cell lines were validated using lactic acid bacteria and a natural compound. We have established robust Caco-2-NF-ÎșB-hrGFP and HT-29-NF-ÎșB-hrGFP reporter cell lines which represent a valuable tool for primary screening and identification of bacterial strains and compounds with a potential therapeutic interest

    CuO-CeO2 catalysts based on SBA-15 and SBA-16 for COPrOx. Influence of oxides concentration, incorporation method and support structure

    No full text
    In this work different variables that can affect the catalytic behavior of CuO-CeO2 supported on mesoporous silica (SBA-15 and SBA-16) were studied. The influence on the COPrOx activity of the relative concentration of the CuO and CeO2 active phase and different impregnation methods in mesoporous support was analyzed. The physicochemical characterization was performed EDS-SEM and TEM-STEM, N2 isotherms, X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). The incipient wetness impregnation method (IWI) was the better alternative to introduce the active phases compared to solid state impregnation (SSI). In addition, the catalysts based on 2-D structure of SBA-15 were more active and selective than those based in 3-D SBA-16. In general, the high surface area of the supports benefited the dispersion of CuO and CeO2 oxides nanoparticles. All catalysts displayed the preservation of the mesostructure and the formation of nanoparticles of active phases (less than 10 nm) detected by TEM. The best COPrOx catalyst, obtained from the SBA-15 fibers by IWI method, with a relative CuO concentration of 0.2, exhibited XCO ≄ 99% at 175 °C and above 90% in a wide window of temperatures. This catalyst showed an adequate performance in presence of CO2 and H2O and good recovery of CO conversion and selectivity. The analysis by XPS revealed that the majority species were Ce4+, however in some catalysts Ce3+ species are also present, which are associated with vacancies oxygen and favor the redox process. In addition, Cu2+ and Cu+ species are present, the latter recognized as a key site of CO adsorption in the reaction mechanism

    Lactobacillus rhamnosus postbiotic-induced immunomodulation as safer alternative to the use of live bacteria

    No full text
    Many attempts have been made to search for safer immunomodulatory agents that enhance the immune response and reduce the number and severity of infections in at-risk populations. The use of postbiotics, non-viable microbial cells or cell fractions that confer a health benefit to the consumer, represents a safe and attractive way to modulate and enhance the immune function in order to improve human health. Therefore, the aim of this work is to evaluate the immunoregulatory effect of Lactobacillus rhamnosus CRL1505 postbiotics in a complex culture system using human intestinal epithelial cells (IECs) and dendritic cells (DCs) differentiated from peripheral blood mononuclear cells. First, we demonstrated that L. rhamnosus CRL1505 differentially modulate human IECs and DCs after the challenge with the TLR4 agonist LPS. The CRL1505 strain down-regulated CD40, CD80 and CD86 expression in DCs, and increased their production of TNF-α, IL-1ÎČ, IL-6 and IL-10. Interestingly, the non-viable strain was able to modulate the immune response of both types of human cells. Then, we showed that cell wall (CW1505) and peptidoglycan (PG1505) from L. rhamnosus CRL1505 modulated TLR4-triggered immune response in IECs and DCs. Of interest, CW1505 showed a strong stimulatory effect while the PG1505 presented immune characteristics that were more similar to viable and non-viable CRL1505. To date, several molecules of immunobiotics were identified, that can be connected to specific host-responses. We hereby demonstrated that peptidoglycan of L. rhamnosus CRL1505 is a key molecule for the immunobiotic properties of this strain in human IECs and DCs. Likewise, the result of these studies could provide predictive tools for the in vivo efficacy of postbiotics and the scientific basis for their future applications in immunocompromised patients.Fil: Salva, Maria Susana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - TucumĂĄn. Centro de Referencia para Lactobacilos; Argentina. Instituto Pasteur de Montevideo; UruguayFil: Tiscornia, InĂ©s. Instituto Pasteur de Montevideo; Uruguay. Universidad ORT Uruguay; UruguayFil: GutiĂ©rrez, Florencia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - TucumĂĄn. Centro de Referencia para Lactobacilos; ArgentinaFil: Alvarez, Gladis Susana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - TucumĂĄn. Centro de Referencia para Lactobacilos; ArgentinaFil: Bollati FogolĂ­n, Mariela. Instituto Pasteur de Montevideo; Urugua

    Study of CuO–CeO2 catalysts supported on ordered porous silica with different mesostructure and morphology. Influence on CO preferential oxidation

    Get PDF
    International audienceIn the present work, SBA-15 and SBA-16 ordered mesoporous silicas were synthesized with different morphologies such as fibers, spheres, rods and irregular shapes. Copper and cerium oxides active phase was introduced by two methods, incipient wetness impregnation and solid-state impregnation by using a ball mill. The obtained catalysts were evaluated in the CO preferential oxidation reaction (COPrOx). By means of SAXS, XRD, SEM and TEM microscopies, the mesostructures and morphologies were characterized, as well as the preservation of the porous structure and the presence of oxides nanoparticles. In addition, XPS spectroscopy was used to analyze the chemical state and relative surface abundance of the elements present in the catalysts. From the catalytic results, it could be seen that the incipient wetness impregnation method was the most favorable. The unidirectional porous structure SBA-15 with fiber shape and incipient wetness impregnation achieved the highest conversion of CO and selectivity to CO2 (CO conversion 98% at 175 °C). SBA-16 based catalysts were found less active. However, it is noteworthy that the best material was prepared by using an irregular shaped SBA-16 impregnated by incipient wetness procedure. This catalyst exhibited a maximum CO conversion of 80% at 175 °C. Finally, the SBA-15 mesoporous structure and the incipient wetness impregnation method had a greater influence on the better catalytic performance

    Cs<sub>x</sub>Co/Na-MOR Coating on Ceramic Monoliths for Co-Adsorption of Hydrocarbons Mixture and Selective Catalytic Reduction of NOx

    No full text
    In this work, ceramic monoliths were coated with powders based on exchanged Cs and/or Co cations in Na-mordenite (MOR) zeolite. SEM images showed that zeolite particles fill the macropores of cordierite walls and form a continuous layer of approximately 40 ”m with good adherence. XPS analysis revealed that Co and Cs are present on the film surface solely as Co2+ and Cs+ at exchange positions in zeolite. The monolithic structures were evaluated for the butane-toluene co-adsorption and SCR of NOx with hydrocarbon mixture as the reducing agent. The presence of alkali metal cations in the zeolitic lattice favored the adsorption capacity of both hydrocarbons, while cobalt cations provoked a decrease in the adsorbed amounts due to its weak interaction with the HCs. Breakthrough curves of butane adsorption showed a roll-up phenomenon, associated with a competitive adsorption effect generated from toluene presence. In the desorption process, it was observed that adsorbed toluene hindered the butane diffusion through mordenite channels, which released at higher temperatures (above 250 °C). Cs2CoM and Cs7CoM monoliths were more active than the CoM monolith for NO-SCR. The presence of Cs cations close to Co cations increased the hydrocarbons concentration around active sites at high temperatures, according to TPD results, promoting the reduction activity of NO

    <i>Fusarium</i> Species and Mycotoxins Associated with Sorghum Grains in Uruguay

    No full text
    Grain mold and stalk rot are among the fungal diseases that cause significant losses in sorghum worldwide and are caused by different Fusarium spp. The presence of Fusarium species in sorghum grains causes yield losses and mycotoxin contamination, which represents a risk to consumers. In this study, Fusarium graminearum species complex (FGSC) had a high incidence, followed by Fusarium fujikuroi species complex (FFSC) and F. incarnatum-equiseti species complex. Within FFSC, F. proliferatum, F. andiyazi, F. fujikuroi, F. thapsinum, F. verticillioides and F. subglutinans were identified, and this was the first report of F. fujikuroi in sorghum. The most frequent toxins found in sorghum samples were deoxynivalenol (DON) and zearalenone (ZEN). The presence of fumonisins and nivalenol (NIV) was detected at low levels. This study adds new knowledge about the occurrence of Fusarium species and mycotoxins in sorghum grains. Furthermore, this is the first report in Uruguay on fungicide sensitivity for Fusarium isolates from sorghum, which constitutes an important starting point for defining management practices to minimize fungal infection and mycotoxin contamination

    Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.

    Get PDF
    Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3 mM and 5 mM H(2)O(2)). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans
    corecore