3 research outputs found

    The evaluation of deaths due to methyl alcohol intoxication

    No full text
    Background: Methanol poisoning is a serious medical, social and economic problem that may cause severe illness or death. After methanol ingestion, central nervous system depression, headache, dizziness, nausea, lack of coordination, and confusion begins. Once the initial symptoms have passed, a second set of symptoms arises, 10 to 30 hours after the initial exposure to methanol, including blurring or complete loss of vision and acidosis. Methanol poisoning by ingestion is a world-wide problem, and in some regions it is connected with high morbidity and mortality. The lethal dose of methanol in humans shows pronounced individual differences ranging from 15 to 500 ml. Methods: The records of the First Specialization Board of the Council of Forensic Medicine between 2002 and 2010 were reviewed retrospectively for all methyl alcohol poisoning cases. Results: There were 383 cases recorded. 360 (94%) of total fatalities were men and 23 (6%) were women. The age range was between 17 and 89. Although patients were conscious, cooperative, oriented at first, deteriorated general health state, metabolic acidosis and neurologic sequelae with severe electrocardiographic (ECG) changes were seen in progress of time. The laboratory findings and MRI imaging method were applied to assess progress and medical treatment. Unfortunately severe acidosis, central nervous system (CNS) sequelae and a lethal outcome occurred. The methyl alcohol blood concentrations ranged from 0 to 826 mg per 100 ml. The most common macroscopic and microscopic finding was lung edema, cerebral and cerebellar hemorrhage, ischemic changes in the brain and optic neuritis. Putaminal necrosis and hemorrhage, brainstem petechial hemorrhage, myocardial acute ischemic changes, thalamic and hypothalamic hemorrhage were detected rarely. Conclusions: This is the first study to report postmortem findings, clinical reports, crime scene reports and eye witness accounts to investigate methyl alcohol poisoning cases from medico-legal point of view in Turkey. Methanol poisoning by ingestion is a world-wide problem with high morbidity and mortality. For preventing methanol deaths, both awareness and public education must be increased. © 2017, Scientific Publishers of India. All rights reserved

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore