584 research outputs found

    Three Bead Rotating Chain model shows universality in the stretching of proteins

    Full text link
    We introduce a model of proteins in which all of the key atoms in the protein backbone are accounted for, thus extending the Freely Rotating Chain model. We use average bond lengths and average angles from the Protein Databank as input parameters, leaving the number of residues as a single variable. The model is used to study the stretching of proteins in the entropic regime. The results of our Monte Carlo simulations are found to agree well with experimental data, suggesting that the force extension plot is universal and does not depend on the side chains or primary structure of proteins

    New insights into crustal structure, Cenozoic magmatism, CO2 degassing and seismogenesis in the southern Apennines and Irpinia region from local earthquake tomography

    Get PDF
    We present high-resolution Vp and Vp/Vs models of the southern Apennines (Italy) computed using local earthquakes recorded from 2006 to 2011 with a graded inversion scheme that progressively resolves the crustal structure, from the large scale of the Apennines belt to the local scale of the normal-fault system. High-Vp bodies defined in the upper and mid crust under the external Apennines are interpreted as extensive mafic intrusions revealing anorogenic magmatism episodes that broadened on the Adriatic domain during Paleogene. Under the mountain belt, a low-Vp region, annular to the Neapolitan volcanic district, indicates the existence of a thermal/fluid anomaly in the mid crust, coinciding with a shallow Moho and diffuse degassing of deeply derived CO2. In the belt axial zone, low Vp/Vs gas-pressurized rock volumes under the Apulian carbonates correlate to high heat flow, strong CO2-dominated gas emissions of mantle origin and shallow carbonate reservoirs with pressurized CO2 gas caps. We hypothesize that the pressurized fluid volumes located at the base of the active fault system influence the rupture process of large normal-faulting earthquakes, like the 1980 Mw6.9 Irpinia event, and that major asperities are confined within the high-Vp Apulian carbonates. This study confirms once more that pre-existing structures of the Pliocene Apulian belt controlled the rupture propagation during the Irpinia earthquake. The main shock broke a 30 km long, NE-dipping seismogenic structure, whereas delayed ruptures (both the 20 s and the 40 s sub-events) developed on antithetic faults, reactivating thrust faults located at the eastern edge of the Apulian belt

    An Augmented Reality-Based Solution for Monitoring Patients Vitals in Surgical Procedures

    Get PDF
    In this work, an augmented reality (AR) system is proposed to monitor in real time the patient's vital parameters during surgical procedures. This system is characterised metrologically in terms of transmission error rates and latency. These specifications are relevant for ensuring real-time response. The proposed system automatically collects data from the equipment in the operating room (OR), and displays them in AR. The system was designed, implemented and validated through experimental tests carried out using a set of Epson Moverio BT-350 AR glasses to monitor the output of a respiratory ventilator and a patient monitor in the OR

    From 3D to 4D passive seismic tomography: The sub-surface structure imaging of the Val d’Agri region, southern Italy

    Get PDF
    Local earthquakes (passive seismic) tomography (LET) is a well established tool for the imaging of the sub-surface structure. Alternative to active seismics, the main advantages of using natural sources are the better sounding in deeper portions of the upper crust, the relatively low cost, and the direct availability of S-waves. The main drawback is the achievable model resolution, which is limited by the density of the seismic network and the distribution of elastic sources, rather than the elastic wave frequency. Recently, 4D variations (in space and time) of velocity anomalies have been recognized in active volcanoes (Patanè et al., 2006) and normal faulting systems and ascribed to the medium response to transient geological processes, like dyke intrusions or fluid pressure increase on fault planes. In this paper we show how LET contributes to the imaging of the upper crust in a very attractive region like the Val d’Agri in southern Italy, which hosts both significant oil fields and seismogenic structures. We show that LET allows to improve the definition of the crust structure, at depths larger than those sampled by conventional seismic profiles, and detect the space-time dependency of elastic properties in response to local variations of fluid pressur

    Health technology assessment through Six Sigma Methodology to assess cemented and uncemented protheses in total hip arthroplasty

    Get PDF
    The purpose of this study is to use Health Technology Assessment (HTA) through the Six Sigma (SS) and DMAIC (Define, Measure, Analyse, Improve, Control) problem-solving strategies for comparing cemented and uncemented prostheses in terms of the costs incurred for Total hip arthroplasty (THA) and the length of hospital stay (LOS). Multinomial logistic regression analysis for modelling the data was also performed. Quantitative parameters extracted from gait analysis, electromyography and computed tomography images were used to compare the approaches, but the analysis did not show statistical significance. The variables regarding costs were studied with the Mann-Whitney and Kruskal-Wallis tests. No statistically significant difference between cemented and uncemented prosthesis for the total cost of LOS was found, but the cost of the surgeon had an influence on the overall expenses, affecting the cemented prosthetic approach. The material costs of surgery for the uncemented prosthesis and the cost of theatre of surgery for the cemented prosthesis were the most influential. Multinomial logistic regression identified the Vastus Lateralis variable as statistically significant. The overall accuracy of the model is 93.0%. The use of SS and DMAIC cycle as tools of HTA proved that the cemented and uncemented approaches for THA have similar costs and LO

    Detecting young, slow‐slipping active faults by geologic and multidisciplinary high‐resolution geophysical investigations: A case study from the Apennine seismic belt, Italy.

    Get PDF
    The Southern Apennines range of Italy presents significant challenges for active fault detection due to the complex structural setting inherited from previous contractional tectonics, coupled to very recent (Middle Pleistocene) onset and slow slip rates of active normal faults. As shown by the Irpinia Fault, source of a M6.9 earthquake in 1980, major faults might have small cumulative deformation and subtle geomorphic expression. A multidisciplinary study including morphological-tectonic, paleoseismological, and geophysical investigations has been carried out across the extensional Monte Aquila Fault, a poorly known structure that, similarly to the Irpinia Fault, runs across a ridge and is weakly expressed at the surface by small scarps/warps. The joint application of shallow reflection profiling, seismic and electrical resistivity tomography, and physical logging of cored sediments has proved crucial for proper fault detection because performance of each technique was markedly different and very dependent on local geologic conditions. Geophysical data clearly (1) image a fault zone beneath suspected warps, (2) constrain the cumulative vertical slip to only 25–30 m, (3) delineate colluvial packages suggesting coseismic surface faulting episodes. Paleoseismological investigations document at least three deformation events during the very Late Pleistocene (<20 ka) and Holocene. The clue to surface-rupturing episodes, together with the fault dimension inferred by geological mapping and microseismicity distribution, suggest a seismogenic potential of M6.3. Our study provides the second documentation of a major active fault in southern Italy that, as the Irpinia Fault, does not bound a large intermontane basin, but it is nested within the mountain range, weakly modifying the landscape. This demonstrates that standard geomorphological approaches are insufficient to define a proper framework of active faults in this region. More in general, our applications have wide methodological implications for shallow imaging in complex terrains because they clearly illustrate the benefits of combining electrical resistivity and seismic techniques. The proposed multidisciplinary methodology can be effective in regions characterized by young and/or slow slipping active faults.PublishedB113073.2. Tettonica attivaJCR Journalpartially_ope

    Optical Properties of Guanine Nanowires: Experimental and Theoretical Study

    Get PDF
    International audienceLong nanowires formed by ca. 800 guanine tetrads (G4-wires) are studied in phosphate buffer containing sodium cations. Their room temperature optical properties are compared to those of the monomeric chromophore 2-deoxyguanine monophosphate (dGMP). When going from dGMP to G4-wires, both the absorption and the fluorescence spectra change. Moreover, the fluorescence quantum yield increases by a factor of 7.3 whereas the average fluorescence lifetime increases by more than 2 orders of magnitude, indicating emission associated with weakly allowed transitions. The behavior of G4-wires is interpreted in the light of a theoretical study performed in the frame of the exciton theory combining data from molecular dynamics and quantum chemistry. These calculations, carried out for a quadruplex composed of three tetrads, reveal the existence of various exciton states having different energies and oscillator strengths. The degree of delocalization of the quadruplex Franck−Condon excited states is larger than those found for longer duplexes following the same methodology. The slower excited-state relaxation in G4-wires compared to dGMP is explained by emission from exciton states, possibly limited on individual tetrads, whose coherence is reserved by the reduced mobility of guanines due to multiple Hoogsteen hydrogen bonds

    The Vallo di Diano Range-Bounding Fault-System (Southern Italy): New Evidence of Recent Activity From High-Resolution Seismic Profiling

    Get PDF
    The Vallo di Diano is the largest intermountain basin in the Southern Apennines (Italy). The basin evolution was controlled by the Quaternary activity of a range-bounding, SW-dipping normal fault system located to the east (Vallo di Diano Fault System, VDFS). Geological and oil industry data define the sin-sedimentary activity of the VDFS up to the Middle Pleistocene. However, commercial profiles do not resolve the shallower, eastern portion of the basin, due to strong lateral heterogeneities and unfavourable surface conditions. Therefore, Late Pleistocene-Holocene activity of the VDFS and its seismogenic potential are still uncertain. To better constrain the shallow structure of the basin, we performed four high-resolution seismic surveys, along its eastern side, where slope breccias and fans cover the Mesozoic carbonate bedrock and bury the VDFS. We also investigated some NW-trending flexures affecting Late Pleistocene fans, that we had previously detected and dubitatively ascribed to recent faulting. Seismic data were acquired with a dense wide-aperture geometry. Two high-resolution (HR) NE-trending profiles, about 1.5 km long, were collected using respectively 5 m and 10 m spaced receivers and sources. Two very high-resolution (VHR) NE-trending profiles, 400 and 350 m long, with densely spaced sources (4 m) and receivers (2 m) were also collected. HR profiling was aimed at imaging alluvial fan thickness and morphology of the underlying carbonate bedrock. VHR surveys targeted the flexures and their possible origin. All lines were acquired with a HR vibroseis source, except for the shortest profile, where we used a buffalo-gun, better suited for very near-surface imaging (z < 50 m depth). Seismic imaging consists of reflectivity images obtained by CDP-processing of reflection data complemented by Vp images obtained by multi-scale seismic tomography. The stack sections illuminated the basin down to 0.4-0.5 s TWT and reveal an array of high-angle, generally SW-dipping faults dissecting the bedrock and the alluvial fans. Faulting created accommodation space in the hanging-wall and displaced the different fan generations. Clear reflection truncations in the stack-sections correspond to significant Vp lateral changes in the tomographic images. VHR tomography is well defined along the shortest line down to 40 m depth, where two steps within slope breccias are visible. Moreover, two low-velocity wedges (colluvial packages) are imaged in the near surface (5-20 m depth). These data support recent faulting consistently with surface geomorphic features. We interpret these fault structures as splays of the range bounding master fault. Comparison with commercial reflection profiles nearby reveals a great improvement in seismic imaging achieved by HR surveys, which allow a detailed seismostratigraphic analysis of the basin.UnpublishedSan Francisco (CA), Moscone West, Howard Street3.2. Tettonica attivaope

    Improving prosthetic selection and predicting BMD from biometric measurements in patients receiving total hip arthroplasty

    Get PDF
    There are two surgical approaches to performing total hip arthroplasty (THA): a cemented or uncemented type of prosthesis. The choice is usually based on the experience of the orthopaedic surgeon and on parameters such as the age and gender of the patient. Using machine learning (ML) techniques on quantitative biomechanical and bone quality data extracted from computed tomography, electromyography and gait analysis, the aim of this paper was, firstly, to help clinicians use patient-specific biomarkers from diagnostic exams in the prosthetic decision-making process. The second aim was to evaluate patient long-term outcomes by predicting the bone mineral density (BMD) of the proximal and distal parts of the femur using advanced image processing analysis techniques and ML. The ML analyses were performed on diagnostic patient data extracted from a national database of 51 THA patients using the Knime analytics platform. The classification analysis achieved 93% accuracy in choosing the type of prosthesis; the regression analysis on the BMD data showed a coefficient of determination of about 0.6. The start and stop of the electromyographic signals were identified as the best predictors. This study shows a patient-specific approach could be helpful in the decision-making process and provide clinicians with information regarding the follow up of patients

    The 2009 L’Aquila (Central Italy) Seismic Sequence.

    Get PDF
    On April 6 (01:32 UTC) 2009 a MW 6.1 normal faulting earthquake struck the axial area of the Abruzzo region in Central Italy. The earthquake heavily damaged the city of L’Aquila and its surroundings, causing 308 casualties, 70,000 evacuees and incalculable losses to the cultural heritage. We present the geometry of the fault system composed by two main normal fault planes, reconstructed by means of seismicity distribution: almost 3000 events with ML≥1.9 occurred in the area during the 2009. The events have been located with a 1D velocity model we computed for the area by using data of the seismic sequence. The mainshock, located at around 9.3 km of depth beneath the town of L’Aquila, activated a 50° (+/- 3) SW-dipping and ~135° NW-trending normal fault with a length of about 16 km. The aftershocks activated the whole 10 km of the upper crust up to the surface. The geometry of the fault is coherent with the mapped San Demetrio-Paganica and Mt. Stabiata normal faults. The whole normal fault system that reached about 50 km of length by the end of December in the NW-trending direction, was activated within the first few days of the sequence when most of the energetic events occurred. The main shock fault plane was activated by a foreshock sequence culminated with a MW 4.0 on the 30th of March (13:38 UTC), showing extensional kinematic with a minor left lateral component. The second major structure, located to the north close to Campotosto village, is controlled by a MW 5.0 which occurred on the same day of the main shock (the 6th of April at 23:15 UTC) and by a MW 5.2 event (9th of April - 00:53 UTC). The fault plane shows a shallower dip angle with respect to the main fault plane, of about 35° with a tendency to flattening towards the deepest portion. Due to the lack of seismicity above 5 km depth, the connection between this structure and the mapped Monti della Laga fault is not straightforward. This northern segment is recognisable for about 12-14 km of length, always NW-trending and forming a right lateral step with the main fault plane. The result is a en-echelon system overlapping for about 6 km. Seismicity pattern also highlights the activation of numerous minor normal fault segments within the whole fault system. The deepest is located at around 13-15 km of depth, south of the L’Aquila mainshock, and it seems to be antithetic to the main fault plane
    corecore