178 research outputs found

    Anti-inflammatory effect of simvastatin in an experimental model of spinal cord trauma: involvement of PPAR-α

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statins such as simvastatin are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase used in the prevention of cardiovascular disease. In addition to their cholesterol-lowering activities, statins exert pleiotropic anti-inflammatory effects, which might contribute to their beneficial effects on lipid-unrelated inflammatory diseases. Recently it has been demonstrated that the peroxisome proliferator-activated receptor (PPAR)-α mediates anti-inflammatory effects of simvastatin in vivo models of acute inflammation. Moreover, previous results suggest that PPAR-α plays a role in control of secondary inflammatory process associated with spinal cord injury (SCI).</p> <p>Methods</p> <p>With the aim to characterize the role of PPAR-α in simvastatin activity, we tested the efficacy of simvastatin (10 mg/kg dissolved in saline i.p. 1 h and 6 h after the trauma) in an experimental model of SCI induced in mice by extradural compression of the spinal cord (T6-T7 level) using an aneurysm clip with a closing force of 24 g via a four-level T5-T8 laminectomy, and comparing mice lacking PPAR-α (PPAR-α KO) with wild type (WT) mice. In order to elucidate whether the effects of simvastatin are due to activation of the PPAR-α, we also investigated the effect of a PPAR-α antagonist, GW6471 (1 mg/kg administered i.p. 30 min prior treatment with simvastatin) on the protective effects of on simvastatin.</p> <p>Results</p> <p>Results indicate that simvastatin activity is weakened in PPAR-α KO mice, as compared to WT controls. In particular, simvastatin was less effective in PPAR-α KO, compared to WT mice, as evaluated by inhibition of the degree of spinal cord inflammation, neutrophil infiltration, nitrotyrosine formation, pro-inflammmatory cytokine expression, nuclear factor (NF)-κB activation, inducible nitric-oxide synthase (iNOS) expression, and apoptosis. In addition we demonstrated that GW6471 significantly antagonized the effect of the statin and thus abolished the protective effect.</p> <p>Conclusions</p> <p>This study indicates that PPAR-α can contribute to the anti-inflammatory activity of simvastatin in SCI.</p

    A novel composite formulation of palmitoylethanolamide and quercetin decreases inflammation and relieves pain in inflammatory and osteoarthritic pain models

    Get PDF
    Background: Osteoarthritis (OA) is a common progressive joint disease in dogs and cats. The goal of OA treatment is to reduce inflammation, minimize pain, and maintain joint function. Currently, non-steroidal anti-inflammatory drugs (e.g., meloxicam) are the cornerstone of treatment for OA pain, but side effects with long-term use pose important challenges to veterinary practitioners when dealing with OA pain. Palmitoylethanolamide (PEA) is a naturally-occurring fatty acid amide, locally produced on demand by tissues in response to stress. PEA endogenous levels change during inflammatory and painful conditions, including OA, i.e., they are typically increased during acute conditions and decreased in chronic inflammation. Systemic treatment with PEA has anti-inflammatory and pain-relieving effects in several disorders, yet data are lacking in OA. Here we tested a new composite, i.e., PEA co-ultramicronized with the natural antioxidant quercetin (PEA-Q), administered orally in two different rat models of inflammatory and OA pain, namely carrageenan paw oedema and sodium monoiodoacetate (MIA)-induced OA. Oral treatment with meloxicam was used as benchmark. Results: PEA-Q decreased inflammatory and hyperalgesic responses induced by carrageenan injection, as shown by: (i) paw oedema reduction, (ii) decreased severity in histological inflammatory score, (iii) reduced activity of myeloperoxidase, i.e., a marker of inflammatory cell infiltration, and (iv) decreased thermal hyperalgesia. Overall PEA-Q showed superior effects compared to meloxicam. In MIA-treated animals, PEA-Q exerted the following effects: (i) reduced mechanical allodynia and improved locomotor function, (ii) protected cartilage against MIA-induced histological damage, and (iii) counteracted the increased serum concentration of tumor necrosis factor alpha, interleukin 1 beta, metalloproteases 1, 3, 9 and nerve growth factor. The magnitude of these effects was comparable to, or even greater than, those of meloxicam. Conclusion: The present findings shed new light on some of the inflammatory and nociceptive pathways and mediators targeted by PEA-Q and confirm its anti-inflammatory and pain-relieving effects in rodent OA pain models. The translatability of these observations to canine and feline OA pain is currently under investigation

    protective effect of a new hyaluronic acid carnosine conjugate on the modulation of the inflammatory response in mice subjected to collagen induced arthritis

    Get PDF
    Abstract Several studies demonstrated the pharmacological actions of carnosine as well as hyaluronic acid (HA) during joint inflammation. In that regard, the aim of this study was to investigate the protective effect of a new HA -Carnosine conjugate (FidHycarn) on the modulation of the inflammatory response in mice subjected to collagen-induced arthritis (CIA). CIA was induced by two intradermal injections of 100 μl of an emulsion of collagen (CII) and complete Freund's adjuvant (CFA) at the base of the tail on day 0 and 21. At 35 day post CIA induction, the animals were sacrificed. CII injection caused erythema and edema in the hind paws, histological alterations with erosion of the joint cartilage as well as behavioral changes. Oral treatment with FidHycarn starting at the onset of arthritis (day 25) ameliorated the clinical signs, improved behavioral deficits as well as decreased histological and radiographic alterations. The degree of oxidative damage evaluated by inducible nitric oxide synthase (iNOS), nitrotyrosine, poly-ADP-ribose (PAR) expressions and malondialdehyde (MDA) levels, was also significantly reduced in Carnosine+HA association and FidHycarn treated mice. Moreover, the levels of proinflammatory cytokines and chemokines and cyclo-oxygenase COX-2 enzyme were also more significantly reduced by Carnosine+HA and FidHycarn compared to carnosine alone. However, interestingly, in some cases, the effects of FidHycarn were more important than Carnosine+HA association and not statistically different to methotrexate (MTX) used as positive control. Thus, the conjugation of Carnosine with HA (FidHycarn) could represent an interesting therapeutic strategy to combat arthritis disorders

    Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury

    Get PDF
    Traumatic brain injuries (TBI) are an important public health challenge. In addition, subsequent events at TBI can compromise the quality of life of these patients. In fact, TBI is associated with several complications for both long and short term, some evidence shows how TBI is associated with a decline in cognitive functions such as the risk of developing dementia, cerebral atrophy, and Parkinson disease. After the direct damage from TBI, a key role in TBI injury is played by the inflammatory response and oxidative stress, that contributes to tissue damage and to neurodegenerative processes, typical of secondary injury, after TBI. Given the complex series of events that are involved after TBI injury, a multitarget pharmacological approach is needed. Artesunate is a more stable derivative of its precursor artemisin, a sesquiterpene lactone obtained from a Chinese plant Artemisia annua, a plant used for centuries in traditional Chinese medicine. artesunate has been shown to be a pluripotent agent with different pharmacological actions. therefore, in this experimental model of TBI we evaluated whether the treatment with artesunate at the dose of 30 mg\Kg, had an efficacy in reducing the neuroinflammatory process after TBI injury, and in inhibiting the NLRP3 inflammasome pathway, which plays a key role in the inflammatory process. We also assessed whether treatment with artesunate was able to exert a neuroprotective action by modulating the release of neurotrophic factors. our results show that artesunate was able to reduce the TBI-induced lesion, it also showed an anti-inflammatory action through the inhibition of Nf-kb, release of proinflammatory cytokines IL-1β and TNF-α and through the inhibition NLRP3 inflammasome complex, furthermore was able to reduce the activation of astrocytes and microglia (GFAP, Iba-1). Finally, our results show that the protective effects of artesunate also occur through the modulation of neurotrophic factors (BDNF, GDNF, NT-3) that play a key role in neuronal survival

    Atrazine Inhalation Worsen Pulmonary Fibrosis Regulating the Nuclear Factor-Erythroid 2-Related Factor (Nrf2) Pathways Inducing Brain Comorbidities.

    Get PDF
    BACKGROUND/AIMS: Pulmonary fibrosis can be caused by genetic abnormalities, autoimmune disorders or exposure to environmental pollutants. All these causes have in common the excessive production of oxidative stress species that initiate a cascade of molecular mechanism underlying fibrosis in a variety of organs, including lungs. The chemical name of Atrazine (ATR) is 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine, and it is the most commonly used broad-spectrum herbicide in agricultural crops. Additionally, Bleomycin is a chemotherapeutic agent often used for different lymphoma with a seriously pulmonary complication. The most accredited hypothesis that may explain the mechanism of toxicity induced by ATR or bleomycin is exactly the production of reactive oxygen species (ROS) that leads to an unbalance in the physiological anti-oxidant system. However, until today, nobody has investigated the effect of ATR exposure during pulmonary fibrosis. METHODS: Mice were subject to ATR exposure, to bleomycin injection or to both. At the end of experiment, the lungs and blood were collected. Additionally, we analyzed by different test such as open field, pole and rotarod test or other we investigated the effects of ATR or bleomycin exposure on behavior. RESULTS: Following ATR or bleomycin induction, we found a significant increase in lung damage, fibrosis, and oxidative stress. This condition was significantly worsened when the animals injected with bleomycin were also exposed to ATR. Additionally, we observed significant motor and non-motor impairment in animals exposed to ATR. CONCLUSION: Our study demonstrates that ATR exposure, decrease nuclear factor-erythroid 2-related factor (Nrf2) pathways in both lung and brain
    corecore