11 research outputs found

    Isotopic signature and nano-texture of cesium-rich micro-particles: Release of uranium and fission products from the Fukushima Daiichi Nuclear Power Plant

    Get PDF
    Highly radioactive cesium-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) provide nano-scale chemical fingerprints of the 2011 tragedy. U, Cs, Ba, Rb, K, and Ca isotopic ratios were determined on three CsMPs (3.79–780 Bq) collected within ~10 km from the FDNPP to determine the CsMPs’ origin and mechanism of formation. Apart from crystalline Fe-pollucite, CsFeSi2O6 · nH2O, CsMPs are comprised mainly of Zn–Fe-oxide nanoparticles in a SiO2 glass matrix (up to ~30 wt% of Cs and ~1 wt% of U mainly associated with Zn–Fe-oxide). The 235U/238U values in two CsMPs: 0.030 (±0.005) and 0.029 (±0.003), are consistent with that of enriched nuclear fuel. The values are higher than the average burnup estimated by the ORIGEN code and lower than non-irradiated fuel, suggesting non-uniform volatilization of U from melted fuels with different levels of burnup, followed by sorption onto Zn–Fe-oxides. The nano-scale texture and isotopic analyses provide a partial record of the chemical reactions that occurred in the fuel during meltdown. Also, the CsMPs were an important medium of transport for the released radionuclides in a respirable form

    Radioactive Cs in the severely contaminated soils near the Fukushima Daiichi Nuclear Power Plant

    Get PDF
    Radioactive Cs isotopes (137Cs, t1/2 = 30.07 y and 134Cs, t1/2 = 2.062 y) occur in severely contaminated soils within a few km of the Fukushima Dai-ichi nuclear power plant at concentrations that range from 4×10^5 to 5×10^7 Bq/kg. In order to understand the mobility of Cs in these soils, both bulk and submicron-sized particles elutriated from four surface soils have been investigated using a variety of analytical techniques, including powder X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and analysis of the amount of radioactivity in sequential chemical extractions. Major minerals in bulk soil samples were quartz, feldspar, and minor clays. The submicron-sized particles elutriated from the same soil consist mainly of mica, vermiculite, and smectite and occassional gibbsite. Autoradiography in conjunction with SEM analysis confirmed the association of radioactive Cs mainly with the submicron-sized particles. Up to ~3 MBq/kg of 137Cs are associated with the colloidal size fraction (98% of Cs within top ~5 cm of the soil. These results suggest that the mobility of the aggregates of submicron-sized sheet aluminosilicate in the surface environment is a key factor controlling the current Cs migration in Fukushima
    corecore