33 research outputs found

    Der Einfluss des mikrosozialen und makroökonomischen Umfelds sowie dem Standort auf den Erfolg von Oberwalliser Beherbergungen

    Get PDF
    Im Rahmen meiner Bachelorarbeit befasse ich mich mit der Analyse von Oberwalliser Be- herbergungsbetrieben

    Synthesis of Cone-Shaped Colloids from Rod-Like Silica Colloids with a Gradient in the Etching Rate

    No full text
    We present the synthesis of monodisperse cone-shaped silica colloids and their fluorescent labeling. Rod-like silica colloids prepared by ammonia-catalyzed hydrolysis and condensation of tetraethyl orthosilicate in water droplets containing polyvinylpyrrolidone cross-linked by citrate ions in pentanol were found to transform into cone-shaped particles upon mild etching by NaOH in water. The diameter and length of the resulting particles were determined by those of the initial rod-like silica colloids. The mechanism responsible for the cone-shape involves silica etching taking place with a varying rate along the length of the particle. Our experiments thus also lead to new insights into the variation of the local particle structure and composition. These are found to vary gradually along the length of the rod, as a result of the way the rod grows out of a water droplet that keeps itself attached to the flat end of the bullet-shaped particles. Subtle differences in composition and structure could also be resolved by high-resolution stimulated emission depletion confocal microscopy on fluorescently labeled particles. The incorporation of a fluorescent dye chemically attached to an amine-based silane coupling agent resulted in a distribution of fluorophores mainly on the outside of the rod-shaped particles. In contrast, incorporation of the silane coupling agent alone resulted in a homogeneous distribution. Additionally, we show that etching rods, where a silane coupling agent alone was incorporated and subsequently coupled to a fluorescent dye, resulted in fluorescent silica cones, the orientation of which can be discerned using super-resolution confocal microscopy

    Synthesis of Cone-Shaped Colloids from Rod-Like Silica Colloids with a Gradient in the Etching Rate

    No full text
    We present the synthesis of monodisperse cone-shaped silica colloids and their fluorescent labeling. Rod-like silica colloids prepared by ammonia-catalyzed hydrolysis and condensation of tetraethyl orthosilicate in water droplets containing polyvinylpyrrolidone cross-linked by citrate ions in pentanol were found to transform into cone-shaped particles upon mild etching by NaOH in water. The diameter and length of the resulting particles were determined by those of the initial rod-like silica colloids. The mechanism responsible for the cone-shape involves silica etching taking place with a varying rate along the length of the particle. Our experiments thus also lead to new insights into the variation of the local particle structure and composition. These are found to vary gradually along the length of the rod, as a result of the way the rod grows out of a water droplet that keeps itself attached to the flat end of the bullet-shaped particles. Subtle differences in composition and structure could also be resolved by high-resolution stimulated emission depletion confocal microscopy on fluorescently labeled particles. The incorporation of a fluorescent dye chemically attached to an amine-based silane coupling agent resulted in a distribution of fluorophores mainly on the outside of the rod-shaped particles. In contrast, incorporation of the silane coupling agent alone resulted in a homogeneous distribution. Additionally, we show that etching rods, where a silane coupling agent alone was incorporated and subsequently coupled to a fluorescent dye, resulted in fluorescent silica cones, the orientation of which can be discerned using super-resolution confocal microscopy

    Sculpting Silica Colloids by Etching Particles with Nonuniform Compositions

    Get PDF
    We present the synthesis of new shapes of colloidal silica particles by manipulating their chemical composition and subsequent etching. Segments of silica rods, prepared by the ammonia catalyzed hydrolysis and condensation of tetraethylorthosilicate (TEOS) from polyvinylpyrrolidone loaded water droplets, were grown under different conditions. Upon decreasing temperature, delaying ethanol addition, or increasing monomer concentration, the rate of dissolution of the silica segment subsequently formed decreased. A watery solution of NaOH (∼mM) selectively etched these segments. Further tuning the conditions resulted in rod–cone or cone–cone shapes. Deliberately modulating the composition along the particle’s length by delayed addition of (3-aminopropyl)-triethoxysilane (APTES) also allowed us to change the composition stepwise. The faster etching of this coupling agent in neutral conditions or HF afforded an even larger variety of particle morphologies while in addition changing the chemical functionality. A comparable step in composition was applied to silica spheres. Biamine functional groups used in a similar way as APTES caused a charge inversion during the growth, causing dumbbells and higher order aggregates to form. These particles etched more slowly at the neck, resulting in a biconcave silica ring sandwiched between two silica spheres, which could be separated by specifically etching the functionalized layer using HF

    Homogenous overexpression of the extracellular matrix protein Netrin-1 in a hollow fiber bioreactor

    No full text
    The production of recombinant proteins for functional and biophysical studies, especially in the field of structural determination, still represents a challenge as high quality and quantities are needed to adequately perform experiments. This is in part solved by optimizing protein constructs and expression conditions to maximize the yields in regular flask expression systems. Still, work flow and effort can be substantial with no guarantee to obtain improvements. This study presents a combination of workflows that can be used to dramatically increase protein production and improve processing results, specifically for the extracellular matrix protein Netrin-1. This proteoglycan is an axon guidance cue which interacts with various receptors to initiate downstream signaling cascades affecting cell differentiation, proliferation, metabolism, and survival. We were able to produce large glycoprotein quantities in mammalian cells, which were engineered for protein overexpression and secretion into the media using the controlled environment provided by a hollow fiber bioreactor. Close monitoring of the internal bioreactor conditions allowed for stable production over an extended period of time. In addition to this, Netrin-1 concentrations were monitored in expression media through biolayer interferometry which allowed us to increase Netrin-1 media concentrations tenfold over our current flask systems while preserving excellent protein quality and in solution behavior. Our particular combination of genetic engineering, cell culture system, protein purification, and biophysical characterization permitted us to establish an efficient and continuous production of high-quality protein suitable for structural biology studies that can be translated to various biological systems

    Regiospecific Nucleation and Growth of Silane Coupling Agent Droplets onto Colloidal Particles

    Get PDF
    Nucleation-and-growth processes are used extensively in the synthesis of spherical colloids, and more recently regiospecific nucleation-and-growth processes have been exploited to prepare more complex colloids such as patchy particles. We demonstrate that surface geometry alone can be made to play the dominant role in determining the final particle geometry in such syntheses, meaning that intricate chemical surface patternings are not required. We present a synthesis method for “lollipop”-shaped colloidal heterodimers (patchy particles), combining a recently published nucleation-and-growth technique with our recent findings that particle geometry influences the locus of droplet adsorption onto anisotropic template particles. Specifically, 3-methacryloxypropyl trimethoxysilane (MPTMS) is nucleated and grown onto bullet-shaped and nail-shaped colloids. The shape of the template particle can be chosen such that the MPTMS adsorbs regiospecifically onto the flat ends. In particular, we find that particles with a wider base increase the range of droplet volumes for which the minimum in the free energy of adsorption is located at the flat end of the particle compared with bullet-shaped particles of the same aspect ratio. We put forward an extensive analysis of the synthesis mechanism and experimentally determine the physical properties of the heterodimers, supported by theoretical simulations. Here we numerically optimize, for the first time, the shape of finite-sized droplets as a function of their position on the rod-like silica particle surface. We expect that our findings will give an impulse to complex particle creation by regiospecific nucleation and growth

    Heparins mediate the multimer assembly of secreted Noggin

    No full text
    Extracellular matrix proteins are most often defined by their direct function that involves receptor binding and subsequent downstream signaling. However, these proteins often contain structural binding regions that allow for the proper localization in the extracellular space which guides its correct function in a local and temporal manner. The regions that serve a structural function, although often associated with disease, tend to have a limited understanding. An example of this is the extracellular matrix protein Noggin; as part of the bone morphogenetic protein inhibitor family, Noggin serves a crucial regulatory function in mammalian developmental stages and later periods of life. Noggin's regular function, after its expression and extracellular release, is mediated by its retention in close proximity to the cellular surface by glycosaminoglycans, specifically heparin and heparan sulfate. Using a biophysical hybrid method approach, we present a close examination of the Noggin heparin binding interface, study its dynamic binding behaviors and observe supramolecular Noggin assemblies mediated by heparin ligands. This confirms previously suggested models of non-covalent protein assemblies mediated through glycosaminoglycans that exist in the extracellular matrix. Further, structural analyses through molecular dynamics simulations allowed us to determine contribution energies for each protein residue involved in ligand binding and correlate this to disease associated mutation data. Our combination of various biophysical and computational methods that characterize the heparin binding interface on Noggin and its protein dynamics expands on the functional understanding of Noggin and can readily be applied to other protein systems
    corecore