17 research outputs found

    Internet of things (IoT); security requirements, attacks and counter measures

    Get PDF
    Internet of Things (IoT) is a network of connected and communicating nodes. Recent developments in IoT have led to advancements like smart home, industrial IoT and smart healthcare etc. This smart life did bring security challenges along with numerous benefits. Monitoring and control in IoT is done using smart phone and web browsers easily. There are different attacks being launched on IoT layers on daily basis and to ensure system security there are seven basic security requirements which must be met. Here we have used these requirements for classification and subdivided them on the basis of attacks, followed by degree of their severity, affected system components and respective countermeasures. This work will not only give guidelines regarding detection and removal of attacks but will also highlight the impact of these attacks on system, which will be a decision point to safeguard system from high impact attacks on priority basis

    Case-Control Pilot Study on Acute Diarrheal Disease in a Geographically Defined Pediatric Population in a Middle Income Country

    Get PDF
    Introduction. Acute diarrheal disease (ADD) is a common cause of morbidity and mortality in children under 5 years of age. Understanding of the etiology of ADD is lacking in most low and middle income countries because reference laboratories detect limited number of pathogens. The objective of this study was to determine the feasibility to conduct a comprehensive case-control study to survey diarrheal pathogens among children with and without moderate-to-severe ADD. Materials and Methods. Microbiology and molecular-based techniques were used to detect viral, bacterial, and parasitic enteropathogens. The study was conducted in Bucaramanga, Colombia, after Institutional Review Board approval was obtained. Results. Ninety children less than 5 years of age were recruited after a written informed consent was obtained from parents or guardians. Forty-five subjects served as cases with ADD and 45 as controls. Thirty-six subjects out of 90 (40.0%) were positive for at least one enteropathogen, that is, 20 (44.4%) cases and 16 (35.5%) controls. Conclusions. The three most common enteric pathogens were enteroaggregative E. coli (10.0%), Norovirus (6.7%), and Salmonella spp. (5.6%). The E. coli pathogens were 18.8% of all infections making them the most frequent pathogens. Half of ADD cases were negative for any pathogens

    Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders

    Get PDF
    The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins, and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Utilizing exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with YnMyr chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), with ages ranging from 1 to 50 years old, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%), and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%), and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%), and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each), as well as hypertrophy of the clava (24%) were common neuroimaging findings. acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism, and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localisation and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-Myristoylation was similarly affected in acbd6-deficient zebrafish and Xenopus tropicalis models, including Fus, Marcks, and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders

    Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders

    Get PDF
    The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders

    An Enhanced Key Schedule Algorithm of PRESENT-128 Block Cipher for Random and Non-Random Secret Keys

    No full text
    The key schedule algorithm (KSA) is a crucial element of symmetric block ciphers with a direct security impact. Despite its undeniable significance, the KSA is still a less focused area in the design of an encryption algorithm. PRESENT is a symmetric lightweight block cipher that provides the optimal balance between security, performance, and minimal cost in IoT. However, the linear functions in KSA lead to a slow and predictable bit transition, indicating the relationship between round keys. A robust KSA should produce random and independent round keys irrespective of the secret key. Therefore, this research aims to improve the KSA PRESENT-128 block cipher with enhanced randomness, round key bit difference, and the avalanche effect. The experiments on round keys and ciphertext with random, low density and high-density secret key datasets endorse the expected improvements. Moreover, the results show that the improved KSA produces random round keys that successfully pass the NIST randomness test. The bit transition from one round key to another is increased from 20% to 40%, where a greater inclination of the avalanche effect has an increased effect with 50% bit change. On the other hand, the improved KSA PRESENT requires an additional 0.001871 s to generate round keys, as a security cost trade-off

    An Enhanced Key Schedule Algorithm of PRESENT-128 Block Cipher for Random and Non-Random Secret Keys

    No full text
    The key schedule algorithm (KSA) is a crucial element of symmetric block ciphers with a direct security impact. Despite its undeniable significance, the KSA is still a less focused area in the design of an encryption algorithm. PRESENT is a symmetric lightweight block cipher that provides the optimal balance between security, performance, and minimal cost in IoT. However, the linear functions in KSA lead to a slow and predictable bit transition, indicating the relationship between round keys. A robust KSA should produce random and independent round keys irrespective of the secret key. Therefore, this research aims to improve the KSA PRESENT-128 block cipher with enhanced randomness, round key bit difference, and the avalanche effect. The experiments on round keys and ciphertext with random, low density and high-density secret key datasets endorse the expected improvements. Moreover, the results show that the improved KSA produces random round keys that successfully pass the NIST randomness test. The bit transition from one round key to another is increased from 20% to 40%, where a greater inclination of the avalanche effect has an increased effect with 50% bit change. On the other hand, the improved KSA PRESENT requires an additional 0.001871 s to generate round keys, as a security cost trade-off

    Exome sequencing identifies a novel pathogenic variant in RAB3GAP1 causing Warburg Micro syndrome in a Pakistani family

    No full text
    Background: Warburg Micro (WARBM) syndrome is a rare heterogeneous recessive genetic disorder characterized by ocular, neurological, and endocrine problems. To date, disease-causing variants in four genes have been identified to cause this syndrome; of these, RAB3GAP1 variants are the most frequent. Very little is known about WARBM syndrome in rural populations. Objectives: This study aims to investigate the genetics underpinnings of WARBM syndrome in a Pashtun family with two patients from Pakistan. The patients presented with spastic diplegia, severe intellectual disability, microphthalmia, microcornea, congenital cataracts, optic atrophy, and hypogonadism. Methods: Magnetic resonance imaging (MRI) analysis revealed pronounced cerebral atrophy including corpus callosum hypoplasia and polymicrogyria. Exome sequencing and subsequent filtering identified a novel homozygous missense variant NM_001172435: c.2891A>G, p.Gln964Arg in the RAB3GAP1 gene. The variant was validated, and its segregation confirmed, by Sanger sequencing. Results: Multiple prediction tools assess this variant to be damaging, and structural analysis of the protein shows that the mutant amino acid residue affects polar contact with the neighboring atoms. It is extremely rare and is absent in all the public databases. Taken together, these observations suggest that this variant underlies Micro syndrome in our family and is extremely important for management and family planning. Conclusions: Identification of this extremely rare variant extends the mutations spectrum of Micro syndrome. Screening more families, especially in underrepresented populations, will help unveil the mutation spectrum underlying this syndrome
    corecore