53 research outputs found

    Removal and Reconstitution of the Carotenoid Antenna of Xanthorhodopsin

    Get PDF
    Salinixanthin, a C40-carotenoid acyl glycoside, serves as a light-harvesting antenna in the retinal-based proton pump xanthorhodopsin of Salinibacter ruber. In the crystallographic structure of this protein, the conjugated chain of salinixanthin is located at the protein–lipid boundary and interacts with residues of helices E and F. Its ring, with a 4-keto group, is rotated relative to the plane of the π-system of the carotenoid polyene chain and immobilized in a binding site near the β-ionone retinal ring. We show here that the carotenoid can be removed by oxidation with ammonium persulfate, with little effect on the other chromophore, retinal. The characteristic CD bands attributed to bound salinixanthin are now absent. The kinetics of the photocycle is only slightly perturbed, showing a 1.5-fold decrease in the overall turnover rate. The carotenoid-free protein can be reconstituted with salinixanthin extracted from the cell membrane of S. ruber. Reconstitution is accompanied by restoration of the characteristic vibronic structure of the absorption spectrum of the antenna carotenoid, its chirality, and the excited-state energy transfer to the retinal. Minor modification of salinixanthin, by reducing the carbonyl C=O double bond in the ring to a C-OH, suppresses its binding to the protein and eliminates the antenna function. This indicates that the presence of the 4-keto group is critical for carotenoid binding and efficient energy transfer

    Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release.

    Get PDF
    Titration of Asp-85, the proton acceptor and part of the counterion in bacteriorhodopsin, over a wide pH range (2-11) leads us to the following conclusions: 1) Asp-85 has a complex titration curve with two values of pKa; in addition to a main transition with pKa = 2.6 it shows a second inflection point at high pH (pKa = 9.7 in 150-mM KCl). This complex titration behavior of Asp-85 is explained by interaction of Asp-85 with an ionizable residue X'. As follows from the fit of the titration curve of Asp-85, deprotonation of X' increases the proton affinity of Asp-85 by shifting its pKa from 2.6 to 7.5. Conversely, protonation of Asp-85 decreases the pKa of X' by 4.9 units, from 9.7 to 4.8. The interaction between Asp-85 and X' has important implications for the mechanism of proton transfer. In the photocycle after the formation of M intermediate (and protonation of Asp-85) the group X' should release a proton. This deprotonated state of X' would stabilize the protonated state of Asp-85.2) Thermal isomerization of the chromophore (dark adaptation) occurs on transient protonation of Asp-85 and formation of the blue membrane. The latter conclusion is based on the observation that the rate constant of dark adaptation is directly proportional to the fraction of blue membrane (in which Asp-85 is protonated) between pH 2 and 11. The rate constant of isomerization is at least 10(4) times faster in the blue membrane than in the purple membrane. The protonated state of Asp-85 probably is important for the catalysis not only of all-trans <=> 13-cis thermal isomerization during dark adaptation but also of the reisomerization of the chromophore from 13-cis to all-trans configuration during N-->O-->bR transition in the photocycle. This would explain why Asp-85 stays protonated in the N and O intermediates

    Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore

    No full text
    Homologous to bacteriorhodopsin and even more to proteorhodopsin, xanthorhodopsin is a light-driven proton pump that, in addition to retinal, contains a noncovalently bound carotenoid with a function of a light-harvesting antenna. We determined the structure of this eubacterial membrane protein–carotenoid complex by X-ray diffraction, to 1.9-Å resolution. Although it contains 7 transmembrane helices like bacteriorhodopsin and archaerhodopsin, the structure of xanthorhodopsin is considerably different from the 2 archaeal proteins. The crystallographic model for this rhodopsin introduces structural motifs for proton transfer during the reaction cycle, particularly for proton release, that are dramatically different from those in other retinal-based transmembrane pumps. Further, it contains a histidine–aspartate complex for regulating the pKa of the primary proton acceptor not present in archaeal pumps but apparently conserved in eubacterial pumps. In addition to aiding elucidation of a more general proton transfer mechanism for light-driven energy transducers, the structure defines also the geometry of the carotenoid and the retinal. The close approach of the 2 polyenes at their ring ends explains why the efficiency of the excited-state energy transfer is as high as ≈45%, and the 46° angle between them suggests that the chromophore location is a compromise between optimal capture of light of all polarization angles and excited-state energy transfer

    ESR — A retinal protein with unusual properties from Exiguobacterium sibiricum

    No full text
    This review covers the properties of a retinal protein (ESR) from the psychrotrophic bacterium Exiguobacterium sibiricum that functions as a light-driven proton pump. The presence of a lysine residue at the position corresponding to intramolecular proton donor for the Schiff base represents a unique structural feature of ESR. We have shown that Lys96 successfully facilitates delivery of protons from the cytoplasmic surface to the Schiff base, thus acting as a proton donor in ESR. Since proton uptake during the photocycle precedes Schiff base reprotonation, we conclude that this residue is initially in the uncharged state and acquires a proton for a short time after Schiff base deprotonation and M intermediate formation. Involvement of Lys as a proton donor distinguishes ESR from the related retinal proteins — bacteriorhodopsin (BR), proteorhodopsin (PR), and xanthorhodopsin (XR), in which the donor function is performed by residues with a carboxyl side chain. Like other eubacterial proton pumps (PR and XR), ESR contains a histidine residue interacting with the proton acceptor Asp85. In contrast to PR, this interaction leads to shift of the acceptor’s pK a to more acidic pH, thus providing its ability to function over a wide pH range. The presence of a strong H-bond between Asp85 and His57, the structure of the proton-conducting pathways from cytoplasmic surface to the Schiff base and to extracellular surface, and other properties of ESR were demonstrated by solving its three-dimensional structure, which revealed several differences from known structures of BR and XR. The structure of ESR, its photocycle, and proton transfer reactions are discussed in comparison with homologous retinal proteins
    corecore