30 research outputs found

    A practical method for efficient and optimal production of Seleno‐methionine‐labeled recombinant protein complexes in the insect cells

    Get PDF
    The use of Seleno‐methionine (SeMet) incorporated protein crystals for single or multi‐wavelength anomalous diffraction (SAD or MAD) to facilitate phasing has become almost synonymous with modern X‐ray crystallography. The anomalous signals from SeMets can be used for phasing as well as sequence markers for subsequent model building. The production of large quantities of SeMet incorporated recombinant proteins is relatively straightforward when expressed in Escherichia coli. In contrast, production of SeMet substituted recombinant proteins expressed in the insect cells is not as robust due to the toxicity of SeMet in eukaryotic systems. Previous protocols for SeMet‐incorporation in the insect cells are laborious, and more suited for secreted proteins. In addition, these protocols have generally not addressed the SeMet toxicity issue, and typically result in low recovery of the labeled proteins. Here we report that SeMet toxicity can be circumvented by fully infecting insect cells with baculovirus. Quantitatively controlling infection levels using our Titer Estimation of Quality Control (TEQC) method allow for the incorporation of substantial amounts of SeMet, resulting in an efficient and optimal production of labeled recombinant protein complexes. With the method described here, we were able to consistently reach incorporation levels of about 75% and protein yield of 60–90% compared with native protein expression

    MultiBac: expanding the research toolbox for multiprotein complexes

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Protein complexes composed of many subunits carry out most essential processes in cells and, therefore, have become the focus of intense research. However, deciphering the structure and function of these multiprotein assemblies imposes the challenging task of producing them in sufficient quality and quantity. To overcome this bottleneck, powerful recombinant expression technologies are being developed. In this review, we describe the use of one of these technologies, MultiBac, a baculovirus expression vector system that is particularly tailored for the production of eukaryotic multiprotein complexes. Among other applications, MultiBac has been used to produce many important proteins and their complexes for their structural characterization, revealing fundamental cellular mechanisms

    Titer estimation for quality control (TEQC) method: A practical approach for optimal production of protein complexes using the baculovirus expression vector system

    Get PDF
    The baculovirus expression vector system (BEVS) is becoming the method of choice for expression of many eukaryotic proteins and protein complexes for biochemical, structural and pharmaceutical studies. Significant technological advancement has made generation of recombinant baculoviruses easy, efficient and user-friendly. However, there is a tremendous variability in the amount of proteins made using the BEVS, including different batches of virus made to express the same proteins. Yet, what influences the overall production of proteins or protein complexes remains largely unclear. Many downstream applications, particularly protein structure determination, require purification of large quantities of proteins in a repetitive manner, calling for a reliable experimental set-up to obtain proteins or protein complexes of interest consistently. During our investigation of optimizing the expression of the Mediator Head module, we discovered that the 'initial infectivity' was an excellent indicator of overall production of protein complexes. Further, we show that this initial infectivity can be mathematically described as a function of multiplicity of infection (MOI), correlating recombinant protein yield and virus titer. All these findings led us to develop the Titer Estimation for Quality Control (TEQC) method, which enables researchers to estimate initial infectivity, titer/MOI values in a simple and affordable way, and to use these values to quantitatively optimize protein expressions utilizing BEVS in a highly reproducible fashion

    High-resolution crystal structure of human asparagine synthetase enables analysis of inhibitor binding and selectivity

    Get PDF
    Expression of human asparagine synthetase (ASNS) promotes metastatic progression and tumor cell invasiveness in colorectal and breast cancer, presumably by altering cellular levels of L-asparagine. Human ASNS is therefore emerging as a bona fide drug target for cancer therapy. Here we show that a slow-onset, tight binding inhibitor, which exhibits nanomolar affinity for human ASNS in vitro, exhibits excellent selectivity at 10 μM concentration in HCT-116 cell lysates with almost no off-target binding. The high-resolution (1.85 Å) crystal structure of human ASNS has enabled us to identify a cluster of negatively charged side chains in the synthetase domain that plays a key role in inhibitor binding. Comparing this structure with those of evolutionarily related AMP-forming enzymes provides insights into intermolecular interactions that give rise to the observed binding selectivity. Our findings demonstrate the feasibility of developing second generation human ASNS inhibitors as lead compounds for the discovery of drugs against metastasis

    Crystallization and preliminary X-ray crystallographic studies of transportin 1 in complex with nucleocytoplasmic shuttling and nuclear localization fragments

    No full text
    Transportin 1 was cocrystallized with nucleocytoplasmic shuttling fragments of JKTBP and hnRNP D and a nuclear localization fragment of TAP. X-ray diffraction data were collected using synchrotron radiation at SPring-8

    Structural Insights into the Altering Function of CRMP2 by Phosphorylation

    Get PDF
    Collapsin response mediator protein 2 (CRMP2) regulates neuronal polarity by controlling microtubule dynamics. CRMP2 activity is regulated by semaphorin-induced phosphorylation at the C-terminal tail domain. Unphosphorylated CRMP2 induces effective axonal microtubule formation to give the axonal characteristics to a neurite, whereas phosphorylated CRMP2 leads to the apparently opposite effect, growth cone collapse. We have recently characterized the structural detail of CRMP2-induced axonal microtubule formation (Niwa et al. (2017) Sci. Rep., 7: 10681). CRMP2 forms the hetero-trimer with GTP-tubulin to induce effective axonal microtubule formation in the future axon. Phosphorylation of CRMP2 has been reported to decrease the affinity between CRMP2 and the microtubule, albeit the molecular mechanisms of how the phosphorylation of CRMP2 changes the structure to achieve distinct effects from unphosphorylated CRMP2 is not well understood. Here we performed a series of biochemical and structural analyses of phospho-mimic CRMP2. Phosphorylation of CRMP2 undergoes small conformational changes at the C-terminal tail with shifting the surface charge, which not only alters the interactions within the CRMP2 tetramer but also alters the interactions with GTP-tubulin. Consequently, phospho-mimic CRMP2 fails to form a hetero-trimer with GTP-tubulin, thus losing the ability to establish and maintain the axonal microtubules

    Yeast Hrq1 shares structural and functional homology with the disease-linked human RecQ4 helicase

    No full text
    The five human RecQ helicases participate in multiple processes required to maintain genome integrity. Of these, the disease-linked RecQ4 is the least studied because it poses many technical challenges. We previously demonstrated that the yeast Hrq1 helicase displays similar functions to RecQ4 in vivo, and here, we report the biochemical and structural characterization of these enzymes. In vitro, Hrq1 and RecQ4 are DNA-stimulated ATPases and robust helicases. Further, these activities were sensitive to DNA sequence and structure, with the helicases preferentially unwinding D-loops. Consistent with their roles at telomeres, telomeric repeat sequence DNA also stimulated binding and unwinding by these enzymes. Finally, electron microscopy revealed that Hrq1 and RecQ4 share similar structural features. These results solidify Hrq1 as a true RecQ4 homolog and position it as the premier model to determine how RecQ4 mutations lead to genomic instability and disease
    corecore