134 research outputs found

    The Down syndrome critical region protein TTC3 inhibits neuronal differentiation via RhoA and Citron kinase.

    Get PDF
    The Down syndrome critical region (DSCR) on Chromosome 21 contains many genes whose duplication may lead to the major phenotypic features of Down syndrome and especially the associated mental retardation. However, the functions of DSCR genes are mostly unknown and their possible involvement in key brain developmental events still largely unexplored. In this report we show that the protein TTC3, encoded by one of the main DSCR candidate genes, physically interacts with Citron kinase (CIT-K) and Citron N (CIT-N), two effectors of the RhoA small GTPase that have previously been involved in neuronal proliferation and differentiation. More importantly, we found that TTC3 levels can strongly affect the NGF-induced differentiation of PC12 cells, by a CIT-K-dependent mechanism. Indeed, TTC3 overexpression leads to strong inhibition of neurite extension, which can be reverted by CIT-K RNAi. Conversely, TTC3 knockdown stimulates neurite extension in the same cells. Finally, we find that Rho, but not Rho kinase, is required for TTC3 differentiation-inhibiting activity. Our results suggest that the TTC3–RhoA–CIT-K pathway could be a crucial determinant of in vivo neuronal development, whose hyperactivity may result in detrimental effects on the normal differentiation program

    Hand rehabilitation with sonification techniques in the subacute stage of stroke

    Get PDF
    After a stroke event, most survivors suffer from arm paresis, poor motor control and other disabilities that make activities of daily living difficult, severely affecting quality of life and personal independence. This randomized controlled trial aimed at evaluating the efficacy of a music-based sonification approach on upper limbs motor functions, quality of life and pain perceived during rehabilitation. The study involved 65 subacute stroke individuals during inpatient rehabilitation allocated into 2 groups which underwent usual care dayweek) respectively of standard upper extremity motor rehabilitation or upper extremity treatment with sonification techniques. The Fugl-Meyer Upper Extremity Scale, Box and Block Test and the Modified Ashworth Scale were used to perform motor assessment and the McGill Quality of Life-it and the Numerical Pain Rating Scale to assess quality of life and pain. The assessment was performed at baseline, after 2 weeks, at the end of treatment and at follow-up (1 month after the end of treatment). Total scores of the Fugl-Meyer Upper Extremity Scale (primary outcome measure) and hand and wrist sub scores, manual dexterity scores of the affected and unaffected limb in the Box and Block Test, pain scores of the Numerical Pain Rating Scale (secondary outcomes measures) significantly improved in the sonification group compared to the standard of care group (time*group interaction < 0.05). Our findings suggest that music-based sonification sessions can be considered an effective standardized intervention for the upper limb in subacute stroke rehabilitation

    Plasma Neurofilament Light Chain Predicts Cognitive Progression in Prodromal and Clinical Dementia with Lewy Bodies

    Get PDF
    Plasma neurofilament light chain (NfL) is a marker of neuronal damage in different neurological disorders and might predict disease progression in dementia with Lewy bodies (DLB). The study enrolled 45 controls and 44 DLB patients (including 17 prodromal cases) who underwent an extensive assessment at baseline and at 2 years follow-up. At baseline, plasma NfL levels were higher in both probable DLB and prodromal cases compared to controls. Plasma NfL emerged as the best predictor of cognitive decline compared to age, sex, and baseline severity variables. The study supports the role of plasma NfL as a useful prognostic biomarker from the early stages of DLB

    Gemcitabine and Oxaliplatin in the Treatment of Patients with Immunotherapy-Resistant Advanced Renal Cell Carcinoma: Final Results of a Single-Institution Phase II Study

    Get PDF
    BACKGROUND. Currently, there is no standard treatment for patients with advanced renal cell carcinoma (RCC) who do not experience a response to first-line immunotherapy. In the current Phase II study, the authors explored the antitumor activity of a combination of gemcitabine and oxaliplatin (L-OHP) in this setting. METHODS. Forty-two patients with RCC who had progressive disease following immunotherapy received gemcitabine (1000 mg/m2 intravenously on Days 1 and 8 every 21 days) and L-OHP (90 mg/m2 intravenously on Day 1 every 21 days) for a minimum of 2 cycles before responses were evaluated. Responses to treatment and toxicity were recorded according to the Response Evaluation Criteria in Solid Tumors and the National Cancer Institute Common Toxicity Criteria, respectively. RESULTS. No complete responses were recorded; however, 6 patients experienced a partial response (14.28%; 95% confidence interval, 5.43-28.5%), 11 patients (26.19%) had temporary stable disease as a best response, and the remaining 25 patients (59.52%) experienced progression despite receiving treatment. The median time to disease progression was 2.5 months (mean, 3.86 months; range, 1.5-11.0 months), whereas the median overall survival was 9.5 months (mean, 10.46 months; range, 4.0-22.5 months). With regard to toxicity, treatment generally was well tolerated, with only one episode of Grade 4 toxicity and expected episodes of Grade 3 toxicity, including myelosuppression and neuropathy. CONCLUSIONS. The current results suggest that the combination of gemcitabine and L-OHP possesses a certain level of activity and an acceptable toxicity profile in patients with immunotherapy-resistant advanced RCC

    Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease.

    Get PDF
    Many neurodegenerative diseases exhibit protein accumulation and increased oxidative stress. Therapeutic strategies include clearing aggregate-prone proteins by enhancing autophagy or decreasing oxidative stress with antioxidants. Many autophagy-inducing stimuli increase reactive oxygen species (ROS), raising concerns that the benefits of autophagy up-regulation may be counterbalanced by ROS toxicity. Here we show that not all autophagy inducers significantly increase ROS. However, many antioxidants inhibit both basal and induced autophagy. By blocking autophagy, antioxidant drugs can increase the levels of aggregate-prone proteins associated with neurodegenerative disease. In fly and zebrafish models of Huntington's disease, antioxidants exacerbate the disease phenotype and abrogate the rescue seen with autophagy-inducing agents. Thus, the potential benefits in neurodegenerative diseases of some classes of antioxidants may be compromised by their autophagy-blocking properties

    Perturbation with Intrabodies Reveals That Calpain Cleavage Is Required for Degradation of Huntingtin Exon 1

    Get PDF
    Background: Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington's disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD. Methodology/Principal Findings: We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, V_L12.3, turnover of soluble mHDx-1 in living cells is blocked. Conclusions/Significance: These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications

    PICALM modulates autophagy activity and tau accumulation.

    Get PDF
    Genome-wide association studies have identified several loci associated with Alzheimer's disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover.We are grateful for funding from a Wellcome Trust Principal Research Fellowship (D.C.R.), a Wellcome Trust/MRC Strategic Grant on Neurodegeneration (D.C.R., C.J.O’.K.), a Wellcome Trust Strategic Award to Cambridge Institute for Medical Research, Wellcome Trust Studentship (E.Z.), the Alzheimer’s disease Biomedical Research Unit and Addenbrooke’s Hospital, the Tau Consortium, a fellowship from University of Granada (A.L.R.), a V Foundation/Applebee’s Research Grant (D.S.W.) and NCI R01 CA 109281 (D.S.W.).This is the final published version. It is also available from Nature Publishing at http://www.nature.com/ncomms/2014/140922/ncomms5998/full/ncomms5998.html

    Are patients with GBA-Parkinson disease good candidates for deep brain stimulation? A longitudinal multicentric study on a large Italian cohort

    Get PDF
    Background: GBA variants increase the risk of developing Parkinson disease (PD) and influence its outcome. Deep brain stimulation (DBS) is a recognised therapeutic option for advanced PD. Data on DBS long-term outcome in GBA carriers are scarce. Objective: To elucidate the impact of GBA variants on long-term DBS outcome in a large Italian cohort. Methods: We retrospectively recruited a multicentric Italian DBS-PD cohort and assessed: (1) GBA prevalence; (2) pre-DBS clinical features; and (3) outcomes of motor, cognitive and other non-motor features up to 5 years post-DBS. Results: We included 365 patients with PD, of whom 73 (20%) carried GBA variants. 5-year follow-up data were available for 173 PD, including 32 mutated subjects. GBA-PD had an earlier onset and were younger at DBS than non-GBA-PD. They also had shorter disease duration, higher occurrence of dyskinesias and orthostatic hypotension symptoms. At post-DBS, both groups showed marked motor improvement, a significant reduction of fluctuations, dyskinesias and impulsive-compulsive disorders (ICD) and low occurrence of most complications. Only cognitive scores worsened significantly faster in GBA-PD after 3 years. Overt dementia was diagnosed in 11% non-GBA-PD and 25% GBA-PD at 5-year follow-up. Conclusions: Evaluation of long-term impact of GBA variants in a large Italian DBS-PD cohort supported the role of DBS surgery as a valid therapeutic strategy in GBA-PD, with long-term benefit on motor performance and ICD. Despite the selective worsening of cognitive scores since 3 years post-DBS, the majority of GBA-PD had not developed dementia at 5-year follow-up
    corecore