30 research outputs found

    Magnetic Properties of Gadolinium-Doped ZnO Films and Nanostructures

    Get PDF
    The magnetic properties of Gd-doped ZnO films and nanostructures are important to the development of next-generation spintronic devices. Here, we elucidate the significant role played by Gd-oxygen-deficiency defects in mediating/inducing ferromagnetic coupling in in situ Gd-doped ZnO thin films deposited at low oxygen pressure by pulsed laser deposition (PLD). Samples deposited at higher oxygen pressures exhibited diamagnetic responses. Vacuum annealing was used on these diamagnetic samples (grown at a relatively high oxygen pressures) to create oxygen-deficiency defects with the aim of demonstrating reproducibility of room-temperature ferromagnetism (RTFM). Samples annealed at oxygen environment exhibited superparamagnetism and blocking-temperature effects. The samples possessed secondary phases; Gd segregation led to superparamagnetism. Theoretical studies showed a shift of the 4f level of Gd to the conduction band minimum (CBM) in Gd-doped ZnO nanowires, which led to an overlap with the Fermi level, resulting in strong exchange coupling and consequently RTFM

    Characterization of the blue emission of Tm/Er co-implanted GaN

    Get PDF
    Comparative studies have been carried out on the cathodoluminescence (CL) and photoluminescence (PL) properties of GaN implanted with Tin and GaN co-implanted with Tin and a low concentration of Er. Room temperature CL spectra were acquired in an electron probe microanalyser to investigate the rare earth emission. The room temperature CL intensity exhibits a strong dependence on the annealing temperature of the implanted samples. The results of CL temperature dependence are reported for blue emission (similar to 477 nm) which is due to intra 4f-shell electron transitions ((1)G(4)-> H-3(6)) associated with Tm3+ ions. The 477 nm blue CL emission is enhanced strongly as the annealing temperature increases up to 1200 degrees C. Blue PL emission has also been observed from the sample annealed at 1200 degrees C. To our knowledge, this is the first observation of blue PL emission from Tin implanted GaN samples. Intra-4f transitions from the D-1(2) level (similar to 465 nm emission lines) of Tm3+ ions in GaN have been observed in GaN:Tm films at temperatures between 20-200 K. We will discuss the temperature dependent Tm3+ emission in both GaN:Tm,Er and GaN:Tm samples

    Generated carrier dynamics in V-pit enhanced InGaN/GaN light emitting diode

    Get PDF
    We investigate the effects of V-pits on the optical properties of a state-of-the art highly efficient, blue InGaN/GaN multi-quantum-well (MQW) light emitting diode (LED) with high internal quantum efficiency (IQE) of > 80%. The LED is structurally enhanced by incorporating pre-MQW InGaN strain relief layer with low InN content and patterned sapphire substrate. For comparison, a conventional (unenhanced) InGaN/GaN MQW LED (with IQE of 46%) grown under similar conditions was subjected to the same measurements. Scanning transmission electron microscopy (STEM) reveals the absence of V-pits in the unenhanced LED, whereas in the enhanced LED, V-pits with {10-11} facets, emerging from threading dislocations (TDs) were prominent. Cathodoluminescence mapping reveals the luminescence properties near the V-pits, showing that the formation of V-pit defects can encourage the growth of defect-neutralizing barriers around TD defect states. The diminished contribution of TDs in the MQWs allows indium-rich localization sites to act as efficient recombination centers. Photoluminescence and time-resolved spectroscopy measurements suggest that the V-pits play a significant role in the generated carrier rate and droop mechanism, showing that the quantum confined Stark effect is suppressed at low generated carrier density, after which the carrier dynamics and droop are governed by the carrier overflow effect

    Structural, magnetic and electronic properties of two dimensional NdN:an ab initio study

    No full text
    Abstract The peculiar magnetic properties of rare earth nitrides (RENs) make them suitable for a wide range of applications. Here, we report on a density functional theory (DFT) study of an interesting member of the family, two-dimensional (2D) NdN film, using the generalized gradient approximation (GGA), including the Hubbard (U) parameter. We consider different film thicknesses, taking into account the effects of N vacancies (VN) and dopants (C and O). Formation energy values show that, even though N vacancy is the predominant defect, C and O dopants are also probable impurities in these films. Individual Nd and N magnetic moments oscillate in the presence of VN and dopants owing to the induced lattice distortions. The density of states calculations show that the 2D NdN film has a semi-metallic nature, while the f orbitals are separated into fully filled and empty bands. A magnetic anisotropy energy of ∼50 μeV is obtained, and the easy axis aligns along the film orientation as the film thickness increases, revealing that such films are ideal candidates for spintronic applications

    Fluctuations and Anharmonicity in Lead Iodide Perovskites from Molecular Dynamics Supercell Simulationss

    No full text
    International audienceWe present a systematic study based on first principles molecular dynamics simulations of lead iodide perovskites with three different cations, including methylammonium (MA), formamidinium (FA) and cesium. Using the high temperature perovskite structure as a reference, we investigate the instabilities that develop as the material is cooled down to 370 K. All three perovskites display anharmonicity in the motion of the iodine atoms, with the stronger effect observed for the MAPbI3 and CsPbI3. At high temperature, this behavior can be traced back to the reduced effective size of the Cs+ and MA+ cations. MAPbI3 undergoes a spontaneous phase transition within our simulation model driven by the dipolar interaction between neighboring MA cations as the temperature is decreased from 450 K. The reverse transformation from tetragonal to cubic is also monitored through the large distribution of the octahedral tilting angles accompanied by an increase in the anharmonicity of the iodine atoms motion. Both MA and FA hybrid perovskites show a strong coupling between the molecular orientations and the local lattice deformations, suggesting mixed order-disorder/displacive characters of the high temperature phase transition

    Defect induced d

    No full text
    corecore