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Abstract 

We investigate the effects of V-pits on the optical properties of a state-of-the art highly efficient, 

blue InGaN/GaN multi-quantum-well (MQW) light emitting diode (LED) with high internal quantum 

efficiency (IQE) of > 80%. The LED is structurally enhanced by incorporating pre-MQW InGaN strain-

relief layer with low InN content and patterned sapphire substrate. For comparison, a conventional 

(unenhanced) InGaN/GaN MQW LED (with IQE of 46%) grown under similar conditions was 

subjected to the same measurements. Scanning transmission electron microscopy (STEM) reveals 

the absence of V-pits in the unenhanced LED, whereas in the enhanced LED, V-pits with �101�1� 
facets, emerging from threading dislocations (TDs) were prominent. Cathodoluminescence mapping 

reveals the luminescence properties near the V-pits, showing that the formation of V-pit defects can 
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encourage the growth of defect-neutralizing barriers around TD defect states. The diminished 

contribution of TDs in the MQWs allows indium-rich localization sites to act as efficient 

recombination centers. Photoluminescence and time-resolved spectroscopy measurements suggest 

that the V-pits play a significant role in the generated carrier rate and droop mechanism, showing 

that the quantum confined Stark effect is suppressed at low generated carrier density, after which 

the carrier dynamics and droop are governed by the carrier overflow effect. 

 

Keywords InGaN, efficiency droop, light emitting diode, carrier dynamics, time-resolved 

spectroscopy  
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Blue light emitting diodes (LEDs) based on III-nitrides materials are distinguished by their structural 

and mechanical robustness and their inherently efficient radiative recombination rates.1-2 At high 

carrier injection rates, however, InGaN LEDs suffer from an efficiency droop,2-10 which limits their 

performance. According to the prevalent consensus, Auger recombination is the cause of the 

droop.6-8 However, some researchers have also attributed this droop to the presence of polarization 

fields in the active layers, which facilitate electron leakage into the p-GaN layer.9, 11-12 In fact, it has 

been suggested that these effects might not be mutually exclusive.10 To mitigate the deleterious 

effects of the droop, researchers have experimented on several structural improvements. One of the 

most prominent efforts focused on a patterned sapphire substrate (PSS) that results in stress 

relaxation of the GaN epilayers and the reduction of TD density, leading to efficiency 

improvement.13-16 Other approaches, based on inclusion of p-AlGaN 17-18 or p-InGaN/AlGaN 19 

electron blocking layers (EBL) above the multi-quantum-well (MQW) LED structure, were found to 

enhance efficiency. Additionally, incorporation of InGaN/GaN strain-relief layers, such as strained-

layer superlattices (SLSs) or low InN content layers, have been explored as a means to increase 

InGaN LED efficiency by suppressing built-in polarization fields in the MQW region.20-22  SLS layers 

have previously been used to regulate the growth of thin quantum wells in V-pits with characteristic 

�101�1� facets.23-25 However, the effects of V-pits on the carrier dynamics and droop mechanism in 

III-nitride LEDs are presently not fully understood.  

In this work, we show the optical properties of the LED structure near such V-pits and the 

effect of generated carriers on the optical efficiency and droop phenomenon. For comparison, we 

also examine a conventional MQW LED grown on a flat substrate without the strain relief layer. 

Thus, the present study advances the current understanding of the carrier dynamics and droop 

effects in LEDs. 

EXPERIMENTAL DETAILS 
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Two blue-emitting InxGa1-xN/GaN LED structures (nominal x ≈ 0.15) were prepared by 

metalorganic chemical vapor deposition (MOCVD). The structurally enhanced LED sample (denoted 

as LED1) was grown on PSS (lens-shaped patterns of ~2 µm diameter) with a low InN content strain-

relief layer and an EBL, whereas LED2 sample was grown as a conventional LED structure on a planar 

sapphire substrate without a strain-relief layer or EBL. We used trimethyl-indium (TMIn), trimethyl-

gallium (TMGa), trimethyl-aluminum (TMAl) and NH3. Both LED structures consisted of a low-

temperature GaN buffer layer overgrown on the substrates, followed by an undoped GaN layer of 3 

µm thickness. In the next step, a 3-µm thick n-GaN layer was grown, followed by an 8-period 

InGaN/GaN (3 nm/8 nm) MQW active layer capped by a p-GaN layer. In LED1, a strain-relief layer 

was inserted between the n-GaN layer and the InGaN/GaN MQW active region. A p-AlGaN EBL was 

sandwiched between the p-GaN layer and the MQWs of LED1. For I-V and electroluminescence (EL) 

characterization, the LEDs were fabricated by inductively coupled plasma (ICP) etching to expose the 

n-GaN layer. Prior to ICP etching, a 500 nm SiO2 protective layer was grown on part of the p-GaN 

layer. This SiO2 layer was then after, etched away using buffered oxide etchant (BOE) to expose the 

p-GaN layer. Ni/Au (5/5 nm) current spreading layer was deposited on the p-GaN layers, following 

which Au (150 nm) and Ti/Al/Ni/Au (10/100/30/100 nm) electrodes were subsequently deposited on 

the exposed p-GaN and n-GaN layers, respectively. A Keithley DC power supply was used as the 

voltage source for IV measurements, and ReRa solutions Tracer IV-curve software was used for data 

acquisition (Figure S5, supporting information).  

The LED samples were prepared for scanning transmission electron microscopy (STEM) and 

high angle annular dark field-scanning TEM images (HAADF-STEM) using an FEI Quanta 3D focused 

Ion Beam (FIB)-Scanning Electron Microscope (SEM). The HAADF-STEM images were acquired using a 

Cs-Probe Corrected FEI Titan, operated at an acceleration voltage of 300 kV. We estimated the V-pit 

density after etching the p-layer and EBL by FIB-SEM. Cathodoluminescence (CL) mapping was 

acquired at room temperature (RT) using an FEI Sirion 200 FEGSEM attached to monochromator 

with 400 l/mm grating.26 The electron beam energy was fixed at 10 keV for CL mapping. For power-
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dependent RT-photoluminescence (PL) measurements, the second harmonic line (400 nm) of an 

ultrafast (150 fs) Ti:Sapphire laser (76 MHz) was used. For temporally resolved RT-PL (TRPL) 

measurements, an APE GmbH pulse picker was used to reduce the pulse frequency to 1 MHz. The 

diameter of the incident beam was ~ 60 µm. A charge-coupled device camera attached to a 

Hamamatsu single-sweep streak camera was used to acquire both the temporal and time integrated 

responses. The samples were mounted in a closed-cycle helium cryostat for low temperature (5 K) 

measurements.  

RESULTS AND DISCUSSION 

Figure 1(a) shows the cross-sectional STEM images of the LED1. We observe a TD defect 

(circled area) emerge from the center of the V-pit defect into the p-GaN layer of the sample. SEM 

images reveal that the average V-pit density is ≈ 1.5 × 108 cm
-2 as shown in Figure S2 of the 

Supporting Information.27 The facets of the V-pit walls are separated by a ≈ 63° angle, which 

coincides with the angle separating the �101�1� group of planes of hexagonal InGaN structures.28-29 

The STEM image shows that the V-pit walls are characterized by quantum well and barrier thinning, 

in line with previous observations.23-24 It is well known that different planer facets of III-nitride based 

crystal lattices have different surface energies,30-31 which can lead to strong dependence of adatom 

kinetics on the crystal plane orientation.32 Indeed, it was shown by Hangleiter, et al.25 demonstrated 

that the In growth rate along the semi-polar plane is slow, which would explain the MQW thinning. 

V-pits are not observed in LED2, as shown in Figure 1(b), where TDs can be seen cleaving through its 

MQWs.  

We investigate the detailed emission spectrum of LED1 to study the effect of the V-pits. We 

plot the mean CL energy spectrum of LED1 emission (Figure 2(a)), showing that the main energy 

peak is centered at ~2.71 eV. The CL intensity maps corresponding to the color shaded energy 

regions are shown alongside the spectrum. The low energy InGaN shoulder, located in the 2.35–2.70 

eV range, corresponds to the brighter areas on the CL map in Figure 2(b), while the dark spots are 
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signatures of the V-pits. The shoulder can be due to InN-rich fluctuations inside the MQWs. The 

bright regions shown in Figure 2(c) correspond to the MQW emission in the 2.75–2.90 eV range. In 

the same figure, the V-pit spots become smaller due to reduced InN content in the areas in the 

immediate vicinity of V-pits. The high energy shoulder located between 3.05 and 3.25 eV represents 

the emission from the V-pits (bright spots in the CL map of Figure 2(d)). It should be noted that the 

low InN layer is also located within this range, however its intensity is low enough to provide 

contrast for the inner walls of the V-pits due to the GaN quantum barrier above this layer (Figure S3, 

supporting material).27 Figure 2(e) shows the CL map related to emission near the GaN bandedge 

(located at 3.35–3.50 eV), indicating that the V-pits become sparse, suggesting that p-GaN, the V-pit 

walls and the preceding GaN layers may have contributed to this peak.  

In Figure 3(a) and (b), we compare the hyperspectral CL intensity maps of LED1 and LED2, 

respectively, integrated over the 2.4–2.9 eV energy range Unlike in LED1, we find no evidence of V-

pits in LED2 and large sections of low CL intensity are shown (Figure 3(b)) overshadowing patches 

of high intensity regions. Figure 3(c) and (d) show the corresponding CL spectra of the regions 

annotated as A and B, in the CL maps (Figure 3(a) and 3(b), respectively). A high energy shoulder 

peak at ≈3.03 eV that is related to well-barrier intermixing (Figure 2(d)) in LED1 is absent from the 

LED2 emission spectrum and no significant spectral distinctions exist between the dark and bright 

regions due to the absence of such V-pits. Figure 3(e) and (f) show the correlations between the 

LED centroid energy and the CL intensity (integrated over the 2.4–3.2 eV range). Figure 3(e) 

indicates a clear inverse correlation between the peak energy and CL intensity in LED1. This 

correlation leads us to deduce that the V-pits, corresponding to the high energy shoulder (Figure 

2(d) and Figure 3(c)), act as dislocation terminals. The walls of V-pits are known to act as TD 

passivating barriers, due to thinner MQW walls on the facets of the pits.21, 25, 33 Well-barrier 

intermixing inside of the v-pits may also play a role in the TD passivation according to Pereira, et al. 

30, however we were not able to determine the extent of this from EDX results, as shown in figure 

S7 and S8 of supporting information. Additionally, the regions with lower peak energy also show 
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higher intensity (represented in Figure 2(c)) relative to the high energy shoulder, suggesting a 

higher efficiency of radiative recombination processes within InN-rich potentials in the MQWs. In 

contrast, Figure 3(f) shows a positive correlation between mean peak energy and CL intensity in 

LED2, implying that CL quenching occurs around InN-rich sites. This finding indicates that, in the 

absence of TD passivating V-pits, InN tends to accumulate near TD sites.34-35 

We investigate the radiative recombination efficiency of the carriers and the nature of the 

droop in the enhanced LED (LED1) compared to the conventional one (LED2), by conducting power-

dependent PL measurements at RT and interpreting the results using the Shockley-Read-Hall (SRH) 

model.36-37 The rate equation of generated carriers, G (cm
-3

s
-1), in steady state is given by:  

� = 	
 + �
 + �
�        (1) 

where A, B and C are the coefficients of (non-radiative) Shockley-Read-Hall (SRH), radiative and 

Auger recombination, respectively. G(cm
-3

s
-1) can then be estimated from the average excitation 

power value (Pav) as follows: 

���� = ���×��×�×�����
��×�×� ×!          (2) 

where α is the absorption coefficient of InGaN, linearly extrapolated from the values for InN and 

GaN (SRH Method, supporting information),27 R is the reflectivity of the GaN surface at 3.1 eV 

(10%),38 τD is the pulse duration, τW is the pulse width, A denotes the area of the incident excitation 

beam, hν is the laser photon energy, and q represents the elementary charge. It follows from Eq. (1) 

that the observed integrated luminescence intensity at RT, I(P), of the samples is represented by the 

following equation: 

"��� = #�
          (3) 

where k is a constant related to the product of the spectrograph’s collection efficiency and light 

extraction efficiency of the LEDs. Combining Eq. (1), (2) and (3), the LED internal quantum 

efficiencies (IQE), ηIQE(P), can be determined by the ratio: 
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$%&'��� = ()*
+��� =

%���
,	+���         (4) 

The value of k is estimated using the following steps.  First, the number of parameters is reduced by 

restricting the analysis to low carrier generation rates (G < 1031 cm
-3

s
-1) where Auger recombination 

is negligible and thus allowing the third term in Eq. (1) to be eliminated.39 Substituting for n from Eq. 

(3) gives the new equation, � = .	 √#�0 1 "���2* + 31 #0 4"���, which was then fitted into a plot of 

G(P) versus the integrated luminescence intensity, I(P), where A, B and k were treated as constant 

fitting parameters (Figure 3S, Supporting Information).27 Finally, we estimated the value of ηIQE(P) by 

substituting k into Eq. (4). 

Figure 4(a) shows the carrier generation rate, G, dependence (in log scale) of IQE for both 

LEDs, excited by 400 nm (below the GaN bandgap). To interpret the IQE behavior of both LEDs, we 

define three prominent regions of interest (annotated as RI, RII and RIII Figure 4). Region RI follows 

the linear dependence of the SRH recombination (non-radiative) rate (An) with G. In the range of this 

measurement, the RI region is observed in LED2 for 4.5×1027 < G < 8.6×1028 cm-3s-1, whereas this 

region is not observed in the structurally enhanced LED1. Since ηIQE(P) is a function of radiative 

recombination (Eq. (4)), a slight increase in ηIQE(P) of LED2 occurs because the main LED2 peak 

significantly overlaps with the defect band, which increases linearly with G, at low carrier density 

(Figure 4(d)). Such overlap is not observed at either low or high carrier densities in LED1 (Figure 4(c)). 

In the region denoted as RII (4.5×1027 < G < 6.7×1029 cm-3s-1 for LED1 and 1.0×1029 < G < 6.1×1030 cm-

3s-1 for LED2), ηIQE(P) of both LEDs increases rapidly until it reaches a maximum value. This region 

seems more consistent with the radiative term (Bn
2) in Eq. (1). The maximum IQE for LED1 is > 80%, 

compared to 46% obtained for LED2. In the region denoted as RIII, there is a saturation in radiative 

efficiency and the droop effect occurs, where the IQE of both LEDs starts to decline, albeit at 

different G values. The droop effect commences at around G ≈ 2.3×1030 cm-3s-1 for LED1, and at G ≈ 

9.0×1030 cm-3s-1 for LED2, consistent with the previously reported value of ~3.7×1031 cm-3s-1.39 The 

commencement of the droop effect at lower generated carrier density in LED1 is most likely due to 
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the reduction in the effective MQW volume, as a result of high v-pit defect density. A similar 

observation was made by estimating the IQE of both LEDs by EL (Figure S6). In this case, the 

maximum IQE values for both LEDs were consistent with the PL results (a more detailed discussion of 

this measurement is provided in the supporting information. The internal quantum efficiency, 

ηIQE(P), eventually declined to 48% and 30% at G ≈ 5.3×1031 cm-3s-1 for LED1 and LED2, respectively. 

Furthermore, the inset of Figure 4(a) shows that the efficiency droop characteristics of the two LEDs 

behave differently as the excitation power intensity increases. The droop regime of LED2 follows a 

convex curve, likely attributed to the dominant effect of defect-related non-radiative recombination 

through the SRH process,40 whereas that of LED1 follows a concave IQE curve, indicating that the 

droop could be due to the carrier overflow mechanism. When the effect of SRH recombination is 

significantly diminished, carrier overflow becomes the dominant source of efficiency droop.40  

To further explain the droop behavior, we investigate the dependence of the peak energy of 

both LEDs on G (Figure 4(b)). We observe a clear blue-shift of ~80 meV in LED1 as the excitation 

power increases. However, the peak position of LED2 remains initially unchanged, before slightly 

blue-shifting by 10 meV at G ≈ 6.7×1029 cm-3s-1. To understand these distinct behaviors, the full width 

at half maximum (FWHM) values of the emission peaks of both LEDs are plotted as a function of G 

(Figure 4(b), inset). For LED1, the peak FWHM decreases slightly (by 5 meV) as G increases from 

4.5×1027 to 3.7×1028 cm-3s-1, before broadening by 30 meV to 155 meV at higher G values, followed 

by an invariant response to generated carriers, starting from G ≈ 5.2×1030 cm-3s-1. For LED2, the 

FWHM initially decreases significantly (by 55 meV, from 165 meV to 110 meV for 4.5×1027 < G < 

1.0×1029 cm-3s-1), before broadening by 43 meV as G increases. The FWHM narrows as the carrier 

density increases due to the screening of strain-induced electric field (i.e., quantum confined Stark 

effect (QCSE)) by the increasing carrier population. However, FWHM broadening accompanied by 

blue-shifting of the peak energy as carrier density increases is caused by carrier overflow from 

deeply localized InN-rich states to shallower states and other higher energy states. By this point, the 

QCSE is fully suppressed by the high carrier density.41 Thus, the QCSE effect is not significant in LED1 
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and is overcome at low G value (1028 cm-3s-1). Consequently, its Auger dynamics are governed by the 

overflow effect. We therefore propose that, beyond the QCSE screening limit, the observed peak 

blue-shift in LED1 can be attributed to the carrier saturation of strong localization centers (due to 

indium segregation) and subsequent occupation of weak states inside the well,42 followed by carrier 

occupation of states inside the V-pits. Given that the Auger effect of LED1 is barely affected by 

piezoelectric polarization, carrier overflow around the V-pits is suggested as the mechanism behind 

the characteristic concave droop behavior observed in LED1.10, 40 This mechanism is illustrated in 

Figure 4(e). This assertion is supported by the fact that the droop effect commences at the same G 

value (≈ 1030 cm-3s-1) that the FWHM became constant. It is also plausible to assume that excess 

carriers may overflow into the p-GaN region as well.40 However this effect should not be significant, 

since the excitation photon energy (3.1 eV) is markedly below the AlGaN EBL bandgap. For LED2, the 

limited dependence of the peak energy on carrier generation rate and the initial narrowing of its 

FWHM (Figure 4(b)) indicate that the carriers are already weakly confined, leaving excess carriers to 

contend with a nontrivial contribution from QCSE and the defect states of LED2. The FWHM of LED2 

initially plateaus before starting to increase at high G (> 1029 cm-3s-1) values, indicating that the full 

screening of the QCSE in LED2 occurs at an additional order of magnitude than LED1, causing a slight 

blue-shift at G ≈ 6.7 � 1029 cm-3s-1. Thus, LED2’s Auger effect may have been affected by the 

continuous evolution of the electron-hole overlap ratio due to the dependence of its polarization 

field on injected carrier density, which explains its convex droop characteristic.10  

 Power-dependent TRPL was carried out to confirm the contribution of radiative and non-

radiative recombination in LED1 compared to LED2. Fig. 5(a) and 5(b) respectively show the power-

dependent TRPL lifetimes of LED1 and LED2 taken at 5 K. LED1 exhibits a non-exponential carrier 

lifetime decay (a similar behavior is observed at 290 K), suggesting presence of multi-state 

recombination paths, which can be approximated by the bi-exponential equation:43 

"
5�5� = 	67�
8 �90 + 	:7�8 �;0 ,        (5) 
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where Af and As are, respectively, the fast and slow peak intensities at time t = 0, while τf and τs 

denote the decay lifetimes of the fast and slow decay components. However, LED2 exhibits a single 

exponential decay, suggesting that the excess carrier recombination paths in the two LEDs are 

different. 

Figure 6 shows the PL decay lifetimes as a function of G at both 5 K and 290 K for LED1 and 

LED2, respectively. At 5 K, the PL lifetime of the LED1 peak declines from 96 ns to 47 ns for 6×1027 < 

G < 2.7×1028 cm-3s-1, after which it remains constant (Figure 6(a)). This inverse proportionality of 

radiative carrier lifetime to excitation carrier density implies that defect-related non-radiative 

recombination plays a negligible role at 5 K 17, 44. However, at 290 K, the PL lifetime increases with G 

until 4.2×1028 cm-3s-1, which is due to the increase in non-radiative lifetime of LED1, as shown by the 

radiative and non-radiative lifetime in the inset of Figure 6(a). This behavior is followed by a 

subsequent reduction in the PL lifetime when radiative recombination starts to dominate the 

recombination process due to the saturation of non-radiative defect sites.45 This behavior confirms 

that the non-radiative recombination processes become influential at high temperatures only, when 

thermal activation contributes to the deconfinement of previously confined carriers. Nonetheless, 

this effect occurs at low G values only (G < 1029 cm-3s-1, IQE << 50%). For LED2, Figure 6(b) shows that 

the PL lifetime increases initially at 5 K (from 12 ns to 14 ns in the 6.0×1027 < G < 1.8×1028 cm-3s-1 

range) before decreasing as G increases, whereas at 290 K its PL lifetime increases monotonously 

with G. There is a striking similarity between LED2’s behavior at 5 K and that of LED1 at 290 K. 

Therefore, we posit that, at low excitation intensities, defect-related non-radiative recombination 

plays a prominent role in the recombination processes of LED2 at 5K. At RT, non-radiative processes 

dominate recombination rates beyond G = 1029 cm-3s-1 (inset of Figure 6(b)). This finding is also 

supported by I-V plots (Figure S5, supporting information),27 which show that the effect of shunt 

resistance was less severe in LED1 than in LED2. Shunt resistance is indicative of damaged regions or 

surface imperfections17 which may result from dislocation defects.46 These results confirm that the 

role of defect-related recombination was far less significant in LED1 than in LED2.  
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CONCLUSION 

We investigated the carrier dynamics of a V-pit enhanced MQW LED. At low carrier 

densities, the V-pits acted as TD passivating barriers, thereby permitting efficient radiative 

recombination in the wells. However, as carrier density increases, the reduced effective volume of 

the MQWs allows for an early onset of Auger phenomenon. We further show that the Auger droop 

effect is mainly driven by carrier overflow, rather than piezoelectric polarization or SRH defects in 

the V-pit enhanced LED. Lifetime measurements show that the improved efficiency of the carrier 

recombination processes in the structurally enhanced LED was significantly aided by the presence of 

V-pits, leading to dominant radiative recombination process at RT. 
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Captions 

Figure 1 (a) Cross-sectional STEM image of LED1’s V-pits with MQW thinning on the �101�1� facets. 

(b) Cross-sectional STEM image showing LED2 MQWs with TD defects. 

Figure 2 (a) Mean CL emission spectrum of LED1 generated from a 10 µm × 10 µm area 

hyperspectral map with (b), (c), (d) and (e) CL intensity maps corresponding to the color shaded 

regions marked on the spectrum. 

Figure 3 (a) and (b) RT-CL intensity maps of the two LEDs, (c) and(d) CL Spectra of the annotated 

regions on the micrographs, (e) and (f) Correlation of centroid energy (between 2.4 – 3.2 eV) vs 

intensity (for LED1 and LED2, respectively). 

Figure 4 Carrier generation rate dependence of (a) IQE (inset: IQE vs excitation power intensity 

(linear-scale)) and (b) peak energies (inset: FWHM vs G). PL spectra of (c) LED1 and (d) LED2 at high 

and low G.(e) the carrier dynamic and droop mechanism of LED1 as G increases.  

Figure 5 TRPL temporal response at different excitation powers (~0.044– 0.76 MW/cm2) of (a) LED1 

and (b) LED2. 

Figure 6 PL lifetimes of (a) LED1, and (b) LED2 as a function of G at 5K (black squares) and 290K (red 

circles). Insets are the radiative (blue squares) and non-radiative (magenta circles) lifetimes with 

respect to G at 290K. 
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Synopsys: This graphic shows a V-pit with the different energy of photons emerging from the MQWs 

(low energy blue light) and the V-pits (high energy violet light) 
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�������2 (a) Mean CL emission spectrum of LED1 generated from a 10 µm × 10 µm area hyperspectral map 
with (b), (c), (d) and (e) CL intensity maps corresponding to the color shaded regions marked on the 

spectrum.  
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