4,001 research outputs found

    Biochemical analysis of human Dna2

    Get PDF
    Yeast Dna2 helicase/nuclease is essential for DNA replication and assists FEN1 nuclease in processing a subset of Okazaki fragments that have long single-stranded 5' flaps. It is also involved in the maintenance of telomeres. DNA2 is a gene conserved in eukaryotes, and a putative human ortholog of yeast DNA2 (ScDNA2) has been identified. Little is known about the role of human DNA2 (hDNA2), although complementation experiments have shown that it can function in yeast to replace ScDNA2. We have now characterized the biochemical properties of hDna2. Recombinant hDna2 has single-stranded DNA-dependent ATPase and DNA helicase activity. It also has 5'–3' nuclease activity with preference for single-stranded 5' flaps adjacent to a duplex DNA region. The nuclease activity is stimulated by RPA and suppressed by steric hindrance at the 5' end. Moreover, hDna2 shows strong 3'–5' nuclease activity. This activity cleaves single-stranded DNA in a fork structure and, like the 5'–3' activity, is suppressed by steric hindrance at the 3'-end, suggesting that the 3'–5' nuclease requires a 3' single-stranded end for activation. These biochemical specificities are very similar to those of the ScDna2 protein, but suggest that the 3'–5' nuclease activity may be more important than previously thought

    Development of single-cell protectors for sealed silver-zinc cells

    Get PDF
    Three design approaches to cell-level protection were developed, fabricated, and tested. These systems are referred to as the single-cell protector (SCP), multiplexed-cell protector(MCP). To evaluate the systems 18-cell battery packs without cell level control were subjected to cycle life test. A total of five batteries were subjected to simulate synchronous orbit cycling at 40% depth of discharge at 22C. Batteries without cell-level protection failed between 345 and 255 cycles. Cell failure in the cell level protected batteries occurred between 412 and 540. It was determined that the cell-level monitoring and protection is necessary to attain the long cycle life of a AgZn battery. The best method of providing control and protection of the AgZn cells depends on the specific application and capability of the user

    Development of single cell protectors for sealed silver-zinc cells, phase 1

    Get PDF
    A single cell protector (SCP) assembly capable of protecting a single silver-zinc (Ag Zn) battery cell was designed, fabricated, and tested. The SCP provides cell-level protection against overcharge and overdischarge by a bypass circuit. The bypass circuit consists of a magnetic-latching relay that is controlled by the high and low-voltage limit comparators. Although designed specifically for secondary Ag-Zn cells, the SCP is flexible enough to be adapted to other rechargeable cells. Eighteen SCPs were used in life testing of an 18-cell battery. The cells were sealed Ag-Zn system with inorganic separators. For comparison, another 18-cell battery was subjected to identical life test conditions, but with battery-level protection rather than cell-level. An alternative approach to the SCP design in the form of a microprocessor-based system was conceptually designed. The comparison of SCP and microprocessor approaches is also presented and a preferred approach for Ag-Zn battery protection is discussed

    Exact solution for the stationary Kardar-Parisi-Zhang equation

    Full text link
    We obtain the first exact solution for the stationary one-dimensional Kardar-Parisi-Zhang equation. A formula for the distribution of the height is given in terms of a Fredholm determinant, which is valid for any finite time tt. The expression is explicit and compact enough so that it can be evaluated numerically. Furthermore, by extending the same scheme, we find an exact formula for the stationary two-point correlation function.Comment: 9 pages, 3 figure

    Polynuclear growth model, GOE2^2 and random matrix with deterministic source

    Full text link
    We present a random matrix interpretation of the distribution functions which have appeared in the study of the one-dimensional polynuclear growth (PNG) model with external sources. It is shown that the distribution, GOE2^2, which is defined as the square of the GOE Tracy-Widom distribution, can be obtained as the scaled largest eigenvalue distribution of a special case of a random matrix model with a deterministic source, which have been studied in a different context previously. Compared to the original interpretation of the GOE2^2 as ``the square of GOE'', ours has an advantage that it can also describe the transition from the GUE Tracy-Widom distribution to the GOE2^2. We further demonstrate that our random matrix interpretation can be obtained naturally by noting the similarity of the topology between a certain non-colliding Brownian motion model and the multi-layer PNG model with an external source. This provides us with a multi-matrix model interpretation of the multi-point height distributions of the PNG model with an external source.Comment: 27pages, 4 figure

    Supergiant Barocaloric Effects in Acetoxy Silicone Rubber over a Wide Temperature Range: Great Potential for Solid-state Cooling

    Get PDF
    Solid-state cooling based on caloric effects is considered a viable alternative to replace the conventional vapor-compression refrigeration systems. Regarding barocaloric materials, recent results show that elastomers are promising candidates for cooling applications around room-temperature. In the present paper, we report supergiant barocaloric effects observed in acetoxy silicone rubber - a very popular, low-cost and environmentally friendly elastomer. Huge values of adiabatic temperature change and reversible isothermal entropy change were obtained upon moderate applied pressures and relatively low strains. These huge barocaloric changes are associated both to the polymer chains rearrangements induced by confined compression and to the first-order structural transition. The results are comparable to the best barocaloric materials reported so far, opening encouraging prospects for the application of elastomers in near future solid-state cooling devices.Comment: 19 pages, 7 figures, 2 table

    Asymmetric I-V characteristics and magnetoresistance in magnetic point contacts

    Full text link
    We present a theoretical study of the transport properties of magnetic point contacts under bias. Our calculations are based on the Keldish's non-equilibrium Green's function formalism combined with a self-consistent empirical tight-binding Hamiltonian, which describes both strong ferromagnetism and charging effects. We demonstrate that large magnetoresistance solely due to electronic effects can be found when a sharp domain wall forms inside a magnetic atomic-scale point contact. Moreover we show that the symmetry of the II-VV characteristic depends on the position of the domain wall in the constriction. In particular diode-like curves can arise when the domain wall is placed off-center within the point contact, although the whole structure does not present any structural asymmetry.Comment: 7 figures, submitted to PR

    Effect of exchange interaction on fidelity of quantum state transfer from a photon qubit to an electron-spin qubit

    Get PDF
    We analyzed the fidelity of the quantum state transfer (QST) from a photon-polarization qubit to an electron-spin-polarization qubit in a semiconductor quantum dot, with special attention to the exchange interaction between the electron and the simultaneously created hole. In order to realize a high-fidelity QST we had to separate the electron and hole as soon as possible, since the electron-hole exchange interaction modifies the orientation of the electron spin. Thus, we propose a double-dot structure to separate the electron and hole quickly, and show that the fidelity of the QST can reach as high as 0.996 if the resonant tunneling condition is satisfied.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B Rapid Communication

    Semi-Static Hedging Based on a Generalized Reflection Principle on a Multi Dimensional Brownian Motion

    Full text link
    On a multi-assets Black-Scholes economy, we introduce a class of barrier options. In this model we apply a generalized reflection principle in a context of the finite reflection group acting on a Euclidean space to give a valuation formula and the semi-static hedge.Comment: Asia-Pacific Financial Markets, online firs
    • …
    corecore