635 research outputs found
Recommended from our members
Photoactivated biological processes as quantum measurements.
We outline a framework for describing photoactivated biological reactions as generalized quantum measurements of external fields, for which the biological system takes on the role of a quantum meter. By using general arguments regarding the Hamiltonian that describes the measurement interaction, we identify the cases where it is essential for a complex chemical or biological system to exhibit nonequilibrium quantum coherent dynamics in order to achieve the requisite functionality. We illustrate the analysis by considering measurement of the solar radiation field in photosynthesis and measurement of the earth's magnetic field in avian magnetoreception
Dynamics of Quantum Dot Nuclear Spin Polarization Controlled by a Single Electron
We present an experimental study of the dynamics underlying the buildup and
decay of dynamical nuclear spin polarization in a single semiconductor quantum
dot. Our experiment shows that the nuclei can be polarized on a time scale of a
few milliseconds, while their decay dynamics depends drastically on external
parameters. We show that a single electron can very efficiently depolarize the
nuclear spins and discuss two processes that can cause this depolarization.
Conversely, in the absence of a quantum dot electron, the lifetime of nuclear
spin polarization is on the time scale of a second, most likely limited by the
non-secular terms of the nuclear dipole-dipole interaction. We can further
suppress this depolarization rate by 1-2 orders of magnitude by applying an
external magnetic field exceeding 1 mT.Comment: 5 pages, 3 figure
Nonlinear dynamics of quantum dot nuclear spins
We report manifestly nonlinear dependence of quantum dot nuclear spin
polarization on applied magnetic fields. Resonant absorption and emission of
circularly polarized radiation pumps the resident quantum dot electron spin,
which in turn leads to nuclear spin polarization due to hyperfine interaction.
We observe that the resulting Overhauser field exhibits hysteresis as a
function of the external magnetic field. This hysteresis is a consequence of
the feedback of the Overhauser field on the nuclear spin cooling rate. A
semi-classical model describing the coupled nuclear and electron spin dynamics
successfully explains the observed hysteresis but leaves open questions for the
low field behaviour of the nuclear spin polarization.Comment: 7 pages, 4 figure
Effective cross-Kerr nonlinearity and robust phase gates with trapped ions
We derive an effective Hamiltonian that describes a cross-Kerr type
interaction in a system involving a two-level trapped ion coupled to the
quantized field inside a cavity. We assume a large detuning between the ion and
field (dispersive limit) and this results in an interaction Hamiltonian
involving the product of the (bosonic) ionic vibrational motion and field
number operators. We also demonstrate the feasibility of operation of a phase
gate based on our hamiltonian. The gate is insensitive to spontaneous emission,
an important feature for the practical implementation of quantum computing.Comment: Included discussion of faster gates (Lamb-Dicke regime), Corrected
typos, and Added reference
Single photon absorption by a single quantum emitter
We show that a three-level lambda quantum emitter with equal spontaneous
emission rates on both optically active transitions can absorb an incident
light field with a probability approaching unity, provided that the focused
light profile matches that of the emitter dipole emission pattern. Even with
realistic focusing geometries, our results could find applications in
long-distance entanglement of spin qubits.Comment: 4 pages, 4 figure
- …