We present an experimental study of the dynamics underlying the buildup and
decay of dynamical nuclear spin polarization in a single semiconductor quantum
dot. Our experiment shows that the nuclei can be polarized on a time scale of a
few milliseconds, while their decay dynamics depends drastically on external
parameters. We show that a single electron can very efficiently depolarize the
nuclear spins and discuss two processes that can cause this depolarization.
Conversely, in the absence of a quantum dot electron, the lifetime of nuclear
spin polarization is on the time scale of a second, most likely limited by the
non-secular terms of the nuclear dipole-dipole interaction. We can further
suppress this depolarization rate by 1-2 orders of magnitude by applying an
external magnetic field exceeding 1 mT.Comment: 5 pages, 3 figure