32 research outputs found

    Rotation in the NGC 1333 IRAS 4C Outflow

    Full text link
    We report molecular line observations of the NGC 1333 IRAS 4C outflow in the Perseus Molecular Cloud with the Atacama Large Millimeter/Submillimeter Array. The CCH and CS emission reveal an outflow cavity structure with clear signatures of rotation with respect to the outflow axis. The rotation is detected from about 120 au up to about 1400 au above the envelope/disk mid-plane. As the distance to the central source increases, the rotation velocity of the outflow decreases while the outflow radius increases, which gives a flat specific angular momentum distribution along the outflow. The mean specific angular momentum of the outflow is about 100 au km/s. Based on reasonable assumptions on the outward velocity of the outflow and the protostar mass, we estimate the range of outflow launching radii to be 5-15 au. Such a launching radius rules out that this outflow is launched as an X-wind, but rather, it is more consistent to be a slow disk wind launched from relatively large radii on the disk. The radius of the centrifugal barrier is roughly estimated, and the role of the centrifugal barrier in the outflow launching is discussed.Comment: Accepted to ApJ. 29 pages, 8 figure

    Chemical survey toward young stellar objects in the Perseus molecular cloud complex

    Get PDF
    Chemical diversity of the gas in low-mass protostellar cores is widely recognized. In order to explore its origin, a survey of chemical composition toward 36 Class 0/I protostars in the Perseus molecular cloud complex, which are selected in an unbiased way under certain physical conditions, has been conducted with IRAM 30 m and NRO 45 m telescope. Multiple lines of C2H, c-C3H2 and CH3OH have been observed to characterize the chemical composition averaged over a 1000 au scale around the protostar. The derived beam-averaged column densities show significant chemical diversity among the sources, where the column density ratios of C2H/CH3OH are spread out by 2 orders of magnitude. From previous studies, the hot corino sources have abundant CH3OH but deficient C2H, their C2H/CH3OH column density ratios being relatively low. In contrast, the warm-carbon-chain chemistry (WCCC) sources are found to reveal the high C2H/CH3OH column density ratios. We find that the majority of the sources have intermediate characters between these two distinct chemistry types. A possible trend is seen between the C2H/CH3OH ratio and the distance of the source from the edge of a molecular cloud. The sources located near cloud edges or in isolated clouds tend to have a high C2H/CH3OH ratio. On the other hand, the sources having a low C2H/CH3OH ratio tend to be located in inner regions of the molecular cloud complex. This result gives an important clue to an understanding of the origin of the chemical diversity of protostellar cores in terms of environmental effects.Comment: Accepted for publication in ApJ

    Rotation in the NGC 1333 IRAS 4C Outflow

    Get PDF
    We report molecular line observations of the NGC 1333 IRAS 4C outflow in the Perseus Molecular Cloud with the Atacama Large Millimeter/Submillimeter Array. The CCH and CS emission reveal an outflow cavity structure with clear signatures of rotation with respect to the outflow axis. The rotation is detected from about 120 au up to about 1400 au above the envelope/disk midplane. As the distance to the central source increases, the rotation velocity of the outflow decreases while the outflow radius increases, which gives a flat specific angular momentum distribution along the outflow. The mean specific angular momentum of the outflow is about 100 aukms1\mathrm{au}\,\mathrm{km}\,{{\rm{s}}}^{-1}. On the basis of reasonable assumptions on the outward velocity of the outflow and the protostar mass, we estimate the range of outflow-launching radii to be 5–15 au. Such a launching radius rules out that this outflow is launched as an X-wind, but rather, it is more consistent to be a slow disk wind launched from relatively large radii on the disk. The radius of the centrifugal barrier is roughly estimated, and the role of the centrifugal barrier in the outflow launching is discussed

    Chemical Survey toward Young Stellar Objects in the Perseus Molecular Cloud Complex

    Get PDF
    The chemical diversity of gas in low-mass protostellar cores is widely recognized. In order to explore the origin of this diversity, a survey of chemical composition toward 36 Class 0/I protostars in the Perseus molecular cloud complex, which are selected in an unbiased way under certain physical conditions, has been conducted with IRAM 30 m and NRO 45 m telescope. Multiple lines of C2H, c-C3H2, and CH3OH have been observed to characterize the chemical composition averaged over a 1000 au scale around the protostar. The derived beam-averaged column densities show significant chemical diversity among the sources, where the column density ratios of C2H/CH3OH are spread out by two orders of magnitude. From previous studies, the hot corino sources have abundant CH3OH but deficient C2H, their C2H/CH3OH column density ratios being relatively low. In contrast, the warm-carbon-chain chemistry (WCCC) sources are found to reveal the high C2H/CH3OH column density ratios. We find that the majority of the sources have intermediate characters between these two distinct chemistry types. A possible trend is seen between the C2H/CH3OH ratio and the distance of the source from the edge of a molecular cloud. The sources located near cloud edges or in isolated clouds tend to have a high C2H/CH3OH ratio. On the other hand, the sources having a low C2H/CH3OH ratio tend to be located in the inner regions of the molecular cloud complex. This result gives an important clue toward understanding the origin of the chemical diversity of protostellar cores in terms of environmental effects

    Structural differences between the avian and human H7N9 hemagglutinin proteins are attributable to modifications in salt bridge formation: a computational study with implications in viral evolution.

    Get PDF
    Influenza A hemagglutinin (HA) is a homotrimeric glycoprotein composed of a fibrous globular stem supporting a globular head containing three sialic acid binding sites responsible for infection. The H7N9 strain has consistently infected an avian host, however, the novel 2013 strain is now capable of infecting a human host which would imply that the HA in both strains structurally differ. A better understanding of the structural differences between the avian and human H7N9 strains may shed light into viral evolution and transmissibility. In this study, we elucidated the structural differences between the avian and human H7N9 strains. Throughout the study, we generated HA homology models, verified the quality of each model, superimposed HA homology models to determine structural differences, and, likewise, elucidated the probable cause for these structural differences. We detected two different types of structural differences between the novel H7N9 human and representative avian strains, wherein, one type (Pattern-1) showed three non-overlapping regions while the other type (Pattern-2) showed only one non-overlapping region. In addition, we found that superimposed HA homology models exhibiting Pattern-1 contain three non-overlapping regions designated as: Region-1 (S1571-A1601); Region-3 (R2621-S2651); and Region-4 (S2701-D2811), whereas, superimposed HA homology models showing Pattern-2 only contain one non-overlapping region designated as Region-2 (S1371-S1451). We attributed the two patterns we observed to either the presence of salt bridges involving the E1141 residue or absence of the R1411:D771 salt bridge. Interestingly, comparison between the human H7N7 and H7N9 HA homology models showed high structural similarity. We propose that the putative absence of the R1411:D771 salt bridge coupled with the putative presence of the E1141:R2621 and E1141:K2641 salt bridges found in the 2013 H7N9 HA homology model is associated to human-type receptor binding. This highlights the possible significance of HA salt bridge formation modifications in viral infectivity, immune escape, transmissibility and evolution

    S-PRG Filler Eluate Induces Oxidative Stress in Oral Microorganism: Suppression of Growth and Pathogenicity, and Possible Clinical Application

    No full text
    Controlling the oral microbial flora is putatively thought to prevent not only oral diseases, but also systemic diseases caused by oral diseases. This study establishes the antibacterial effect of the novel bioactive substance “S-PRG filler” on oral bacteria. We examined the state of oxidative stress caused by the six types of ions released in eluate from the S-PRG filler in oral bacterial cells. Moreover, we investigated the effects of these ions on the growth and pathogenicity of Gram-positive and Gram-negative bacteria. We found that the released ions affected SOD amount and hydrogen peroxide in bacterial cells insinuating oxidative stress occurrence. In bacterial culture, growth inhibition was observed depending on the ion concentration in the medium. Additionally, released ions suppressed Streptococcus mutans adhesion to hydroxyapatite, S. oralis neuraminidase activity, and Porphyromonas gingivalis hemagglutination and gingipain activity in a concentration-dependent manner. From these results, it was suggested that the ions released from the S-PRG filler may suppress the growth and pathogenicity of the oral bacterial flora. This bioactive material is potentially useful to prevent the onset of diseases inside and outside of the oral cavity, which in turn may have possible applications for oral care and QOL improvement

    Unveiling a Few Astronomical Unit Scale Rotation Structure around the Protostar in B335

    No full text
    International audienceWe report a kinematic structure in the innermost envelope of the low-mass Class 0 protostar IRAS 19347+0727 in the Bok globule B335 observed at the best angular resolution ever achieved for this source with ALMA. This is based on observations of complex organic molecule emission in the 1.2 mm band, which selectively traces a hot and dense area around the protostar. The distribution of the CH3OH and HCOOH emission is resolved, and a clear velocity gradient is observed. Moreover, the direction of the gradient is found to be different between these two molecules. These features are well explained by the model of an infalling and rotating gas, but not by the model of a Keplerian motion. The protostellar mass and the radius of the centrifugal barrier are determined to be 0.02-0.06 M ⊙ and 3OH and HCOOH are interpreted as the different sizes of their distributions. On the other hand, the SiO emission seems to trace a compact region at the closest vicinity of the protostar, which is a launching point of the outflow or a shocked region caused by the gas accretion onto the protostar. These results first reveal the transition zone from the infalling motion to the rotating motion in this representative isolated protostellar source, which has long been employed as a testbed for star formation studies

    H7N9 human HA homology model has two patterns of structural differences with avian HA homology models.

    No full text
    <p>H7N9 HA homology model superimposition of the (A) 2008b and 2011 strains, (B) 2011 and 2013 strains, and (C) 2008b and 2013 strains. HA homology models of the 2008b (gray), 2011 (blue), and 2013 (pink) strains are shown. Non-overlapping regions representing structural differences (shaded in gray) are indicated. RMSD scores of the superimposed Cα backbone are indicated below. RMSD scores close to 0 would insinuate low structural difference between the homology models.</p

    Quality estimation of influenza A H7N9 hemagglutinin homology models generated.

    No full text
    <p>Ribbon structure and model quality estimation of a (A) representative avian and (B) novel human H7N9 HA homology models. QMEAN score is indicated below. QMEAN scores > 0.5 are considered reliable. α-helix (red), ß-sheet (yellow), and structural loops (white) are indicated.</p
    corecore