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Abstract

The chemical diversity of gas in low-mass protostellar cores is widely recognized. In order to explore the
origin of this diversity, a survey of chemical composition toward 36 Class 0/I protostars in the Perseus
molecular cloud complex, which are selected in an unbiased way under certain physical conditions, has been
conducted with IRAM30m and NRO45m telescope. Multiple lines of C2H, c-C3H2, and CH3OH have been
observed to characterize the chemical composition averaged over a 1000au scale around the protostar. The
derived beam-averaged column densities show significant chemical diversity among the sources, where
the column density ratios of C2H/CH3OH are spread out by two orders of magnitude. From previous studies,
the hot corino sources have abundant CH3OH but deficient C2H, their C2H/CH3OH column density ratios
being relatively low. In contrast, the warm-carbon-chain chemistry (WCCC) sources are found to reveal the
high C2H/CH3OH column density ratios. We find that the majority of the sources have intermediate characters
between these two distinct chemistry types. A possible trend is seen between the C2H/CH3OH ratio and the
distance of the source from the edge of a molecular cloud. The sources located near cloud edges or in isolated
clouds tend to have a high C2H/CH3OH ratio. On the other hand, the sources having a low C2H/CH3OH ratio
tend to be located in the inner regions of the molecular cloud complex. This result gives an important clue
toward understanding the origin of the chemical diversity of protostellar cores in terms of environmental
effects.
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1. Introduction

The chemical compositions of protostellar cores are of
fundamental importance because they are related to the initial
condition for chemical evolution toward protoplanetary disks.
During the last decade, they have extensively been studied by
radioastronomical observations. Now, it is well known that
the chemical compositions of low-mass protostellar cores
(r<∼1000 au) show significant diversity (Sakai & Yamamoto
2013). One distinct case of diversity is hot corino chemistry. It
is characterized by rich complex-organic molecules (COMs)
such as HCOOCH3 and (CH3)2O, and deficient carbon-chain
molecules such as C2H, c-C3H2 and C4H. A prototypical hot
corino source is IRAS16293-2422 (e.g., Cazaux et al. 2003;
Bottinelli et al. 2004). Another distinct case is warm-carbon-
chain chemistry (WCCC). It is characterized by abundant
carbon-chain molecules and deficient COMs. A prototypical
WCCC source is IRAS 04368+2557 in L1527 (Sakai et al.

2008). This kind of exclusive chemical feature between COMs
and carbon-chain molecules represents a major axis of chemical
diversity. It should be noted that we do not know at this
moment whether any other axes exist. In this paper, we
therefore use the word “chemical diversity” to represent the hot
corino chemistry versus WCCC axis.
Sakai et al. (2009) proposed that one possible origin of

the above chemical diversity of low-mass protostellar cores is the
difference of the duration time of their starless phase after the
shielding of the interstellar UV radiation. After the UV-shielding,
the formation of molecules starts both in the gas-phase and on dust
grains, whose timescale is comparable to the dynamical timescale
of a parent cloud (i.e., free-fall time). A longer duration for the
starless phase tends to result in hot corino chemistry, while a
shorter duration time results in WCCC. This mechanism can
explain the various observational results obtained so far (Sakai &
Yamamoto 2013). For instance, lower deuterium fractionation
ratios and association of young starless cores near the WCCC
source are consistent with this picture (Sakai et al. 2010; Sakai &
Yamamoto 2013). However, other mechanisms such as shocks
(outflows, cloud–cloud/filament–filament collision) and UV
radiation from nearby OB stars may also contribute to chemical
diversity (e.g., Buckle & Fuller 2002; Higuchi et al. 2010, 2014;
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Lindberg & Jørgensen 2012; Watanabe et al. 2012; Fukui et al.
2015; Spezzano et al. 2016a, 2016b). Hence, the origin of the
above chemical diversity is still controversial.

So far, only a few sources have unambiguously been
identified as hot corino sources and WCCC sources each.
Examples of the former are IRAS16293-2422, NGC1333
IRAS4A, NGC1333 IRAS4B, NGC1333 IRAS2, Serpens
SMM1, Serpens SMM4, and HH212 (e.g., Cazaux et al. 2003;
Bottinelli et al. 2004; Sakai et al. 2006; Öberg et al. 2011;
Codella et al. 2016). Examples of the latter are L1527, IRAS
15398-3359, and TMC-1A (e.g., Sakai et al. 2008, 2014a).
Thus, the statistics is very poor. To improve our understanding
of the origin of the chemical diversity of protostellar cores, we
need to know what kind of chemistry is commonly occurs.
Recently, Lindberg et al. (2016) and Graninger et al. (2016)
reported statistical studies of the CH3OH and C4H abundances
toward low-mass star-forming cores. They used CH3OH and
C4H as representative COM and carbon-chain molecules,
respectively. Although these studies provide us with rich
information on chemical diversity, different distances to the
sources, as well as regional differences in physical conditions
(UV radiation field, star formation activities) may complicate
an interpretation of the observed chemical diversity.

A powerful approach to overcoming this situation is an
unbiased survey of all protostellar cores in a single molecular
cloud complex. Such a study would allow us to explore
environmental effects on the chemical composition of proto-
stellar sources in the molecular cloud complex without any
preconception. In addition, all the targets are at almost the same
distance, and are therefore affected similarly by beam dilution
effects. This feature makes statistical arguments easier. With
these in mind, we have conducted an unbiased chemical survey
of the Perseus molecular cloud complex in the 3 and 1.3mm
bands. We observed the CH3OH lines as a proxy of the COMs,
because CH3OH is a parent molecule for the production of
larger COMs. We employed the C2H and c-C3H2 lines as a
proxy of carbon-chain-related molecules, because they are the
most fundamental carbon-chain molecules giving bright
emission. By comparing the results for these molecules, we
discuss the chemical diversity of protostellar cores in Perseus.

2. Observations

2.1. Observed Sources and Molecules

The Perseus molecular cloud complex is one of the most
famous and well-studied nearby low-mass star-forming regions
(e.g., Hatchell et al. 2005; Jørgensen et al. 2006). The distance
from the Sun is reported to be 235–238pc (Hirota et al.
2008, 2011). In this paper, we employ a distance of 235pc. It
consists of a few molecular clouds, including NGC1333,
L1455, L1448, IC348, B1, and Barnard 5 (B5), which show
different star formation activities. In the whole Perseus
molecular cloud extending over a 10pc scale, about 400
sources are identified as young stellar object candidates, among
which more than 50 are thought to be Class 0 or Class I
protostars (Hatchell et al. 2005). We selected the target sources
from the list by Hatchell et al. (2007) under the following
criteria. (1) The protostellar sources are in the Class 0/I stage.
(2) The bolometric luminosity is higher than 1Le (except for
B1-5; 0.7 Le). (3) The envelope mass is higher than 1Me to
ensure association of a substantial amount of molecular gas. In
total, 36 protostellar sources are in our target-source list

(Table 1). Our sample is unbiased under the above three
conditions. It should be stressed that it is unbiased from the
viewpoint of chemical conditions.
We observed the CH3OH, C2H, and c-C3H2 lines listed in

Table 2. CH3OH is the most fundamental saturated organic
molecule that is abundant in hot corino sources (e.g., Maret
et al. 2005; Kristensen et al. 2010; Sakai et al. 2012). On the
other hand, C2H and c-C3H2 are basic carbon-chain-related
molecules that are abundant in WCCC sources (e.g., Sakai
et al. 2008, 2009). Hence, we can characterize the chemical
composition of the sources with these species.

2.2. Observation with the Nobeyama 45m Telescope

Observations of the CH3OH lines in the 3mm band were
carried out with the 45m telescope at the Nobeyama Radio
Observatory (NRO) during 2014 January and 2015 March
toward the target sources, except for NGC1333-16 (IRAS 4A)
and NGC1333-17 (SVS 13A). These two sources were
not observed due to the limited observation time. The
side-band-separating (2SB) mixer receiver T100HV was used

Table 1
Source List

IDs Source Names R.A. Decl.
(J2000) (J2000)

NGC1333-1 IRAS4B 03:29:12.01 31:13:08.2
NGC1333-2 IRAS2A 03:28:55.57 31:14:37.1
NGC1333-3 IRAS6; SK-24 03:29:01.66 31:20:28.5
NGC1333-4 IRAS7; SK-20 03:29:10.72 31:18:20.5
NGC1333-5 IRAS4C; SK-5 03:29:13.62 31:13:57.9
NGC1333-6 IRAS1; SK-6 03:28:37.11 31:13:28.3
NGC1333-7 HH7-11 MMS 1; SK-15 03:29:06.50 31:15:38.6
NGC1333-8 HH7-11 MMS 6; SK-14 03:29:04.09 31:14:46.6
NGC1333-9 SVS3; SK-28 03:29:10.70 31:21:45.3
NGC1333-10 SK-29 03:29:07.70 31:21:56.8
NGC1333-11 SK-18 03:29:07.10 31:17:23.7
NGC1333-12 SK-32 03:29:18.25 31:23:16.9
NGC1333-13 03:29:19.70 31:23:56.0
NGC1333-14 No SMM/MM source 03:28:56.20 31:19:12.5
NGC1333-15 SK-22 03:29:15.30 31:20:31.2
NGC1333-16 IRAS4A 03:29:10.53 31:13:31.0
NGC1333-17 SVS13A 03:29:03.75 31:16:03.76
L1448-1 L1448 NW; IRS3C 03:25:35.66 30:45:34.2
L1448-2 L1448 NB; IRS3 03:25:36.33 30:45:14.8
L1448-3 L1448 MM 03:25:38.87 30:44:05.3
L1448-4 IRS2 03:25:22.38 30:45:13.3
L1448-5 IRS2E 03:25:25.90 30:45:02.7
IC348-1 HH211 03:43:56.80 32:00:50.3
IC348-2 IC 348 MMS 03:43:57.05 32:03:05.0
IC348-3 03:44:43.32 32:01:31.6
IC348-4 03:43:50.99 32:03:24.7
Barnard 5 IRS 1 03:47:41.61 32:51:43.9
B1-1 B1-c 03:33:17.87 31:09:32.3
B1-2 B1-d 03:33:16.49 31:06:52.3
B1-3 B1-a 03:33:16.67 31:07:55.1
B1-4 03:32:18.03 30:49:46.9
B1-5 03:31:20.94 30:45:30.3
L1455-1 IRAS 03235+3004 03:26:37.46 30:15:28.2
L1455-2 IRS1; RNO 15 FIR; IRAS

03245+3002
03:27:39.11 30:13:02.8

L1455-3 IRS4 03:27:43.25 30:12:28.9
L1455-4 IRS2 03:27:47.69 30:12:04.4

Note. All sources are listed in Hatchell et al. (2005). A distance of 235pc is
adopted for all the sources.
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as the front end, with the typical system noise temperature
ranging from 150 to 200K. The beam size (HPBW) is 21″ at
90GHz, which corresponds to 4900au at a distance of 235pc.
The back-end was a bank of 16 SAM-45 auto-correlators,
whose bandwidth and frequency resolution each are 250MHz
and 122kHz (with a velocity resolution of ∼0.4 km s−1),
respectively.

The telescope pointing was checked every hour by observing
the SiO maser source, NMLTau. The pointing accuracy was
confirmed to be better than 7″. The position switching mode
was employed for all the above sources, where the position
with the C18O integrated intensity lower than 1Kkms−1

(Hatchell et al. 2005) near each target molecular cloud is taken
as the off-position. The offset of the off-position relative to
the target-source position is (δ R.A., δ decl.)=(−1200″, 0″)
for the sources in the NGC1333 region, (−600″, 0″) for the
sources in the L1448 region, (−600″, 0″) for the sources in the
IC348 and the Barnard 5 regions, (−850″, 0″) for the sources
in the B1 region, and (0″, 780″) for the sources in the L1455
region. The intensity scale was calibrated to the antenna
temperature ( *TA) scale using the chopper-wheel method. The
antenna temperature was converted to the main-beam bright-
ness temperature using the main-beam efficiency of 0.45
provided by the observatory. The uncertainty of the intensity
calibration is estimated to be better than 20%. The observed
data were reduced with the software package NEWSTAR
developed at NRO.

2.3. Observation with the IRAM 30m Telescope

Observations of the CH3OH, C2H, and c-C3H2 lines in the
1.3mm band were carried out with the Institut de Radio
Astronomie Millimétrique (IRAM) 30m telescope at Pico
Veleta. The sources, except for NGC1333-16 (IRAS 4A) and
NGC1333-17 (SVS 13A), were observed in the period from
between 2015 January to 2016 May. For these two sources, we
use the data taken by the ASAI (Astrochemical Survey At
IRAM) project (Lefloch et al. 2018). The Eight Mixer Receiver

(EMIR), E230, was employed in the dual-polarization mode. The
system temperatures ranged from 250 to 400K. HPBW is 10″ at
260GHz, which corresponds to 2400au at a distance of 235pc.
The back-end consists of eight Fourier transform spectrometers
(FTS), whose bandwidth and channel width each are 400MHz
and 200kHz (with a velocity resolution of ∼0.3 km s−1),
respectively. The telescope pointing was checked every hour
by observing nearby continuum sources and was confirmed to be
better than ∼5″. The position switching mode was employed
for all the above sources. As for the off-position, we used the
same position used for the Nobeyama observations, while the
wobbler switching mode was employed for NGC 1333-16 and
NGC1333-17.10 The intensity scale was calibrated to the
antenna temperature scale using the two temperature loads. *TA
was then converted to the main-beam temperature TMB by
multiplying Feff/Beff (mean value between 240 and 260 GHz),
where Feff is the forward efficiency (0.92) and Beff is the main-
beam efficiency (0.59). The uncertainty of the intensity
calibration is estimated to be better than 20%. The data were
reduced with the CLASS software of the GILDAS package.

3. Results

3.1. Data Analyses

Figure 1 shows the observed spectral lines of CH3OH
(J=5–4, K=1, E−, Eu=40 K) and C2H (N=3–2, J=5/
2–3/2, F=3–2, Eu=25 K) for a few selected sources. The
relative intensities between CH3OH and C2H are significantly
different among the sources (see Table 3). For instance, the
CH3OH line is strongly detected toward NGC1333-1, whereas
the intensity of the C2H line is weak. In contrast, NGC1333-6
shows an opposite trend; CH3OH is not detected. A similar
trend can be seen in B1-5: the C2H lines are strong, while the
CH3OH lines are weak. For B1-3 and L1448-3, both the
CH3OH and C2H lines are moderately intense. To quantify
the trend, we evaluated the line parameters for each line by
assuming that the line profile is approximated by a Gaussian
function.
The CH3OH lines at 242GHz would likely trace a relatively

dense and warm region rather than a cold ambient cloud,
because of their upper state energies (e.g., CH3OH; J=5–4,
K=1, E−, Eu=40K) and their critical densities (105–6 cm−3).
The CH3OH (J=5–4) lines were detected toward 35 of the 36
sources. Their spectra are shown in Figure 2. Individual line
parameters of CH3OH (J=5–4) are listed in Table 4. For
NGC1333-1 (IRAS 4B), and NGC1333-2 (IRAS 2), 9 and 12
K-structure lines of CH3OH were detected, respectively, as also
reported in Maret et al. (2005). The CH3OH (J=5–4) lines
detected in L1448-5, B1-1, and B1-3 accompany strong wing
components. On the other hand, the CH3OH (J=2–1) lines
(two or three K-structure) at 97GHz were detected toward all
the sources, whose line parameters are listed in Table 5.
The C2H (N=3–2) lines at 262GHz were detected toward

all the sources, as shown in Figure 3. These lines also trace a
relatively dense and warm region as in the case of the CH3OH
line. Four hyperfine components were seen in all the sources.
Their individual line parameters obtained with the Gaussian fit
are listed in Table 9. The line parameters of the weakest

Table 2
List of Observed Molecules

Molecule Transition Frequency Eu Sμ2

(GHz) (K) (D2)

C2H N=3–2, J=5/2–3/2, F=2–1 262.06746 25.2 1.1
N=3–2, J=5/2–3/2, F=3–2 262.06498 25.2 1.6
N=3–2, J=7/2–5/2, F=3–2 262.00648 25.1 1.7
N=3–2, J=7/2–5/2, F=4–3 262.00426 25.2 2.3

CH3OH J=5–4, K=2 E− 241.90415 60.8 3.4
J=5–4, K=2 A+ 241.88770 72.6 3.4
J=5–4, K=1 E+ 241.87907 55.9 4.0
J=5–4, K=3 E− 241.85235 97.6 2.6
J=5–4, K=2 A− 241.84232 72.5 3.4
J=5–4, K=3 A± 241.83291 84.7 2.6
J=5–4, K=4 E+ 241.82964 130.8 1.5
J=5–4, K=4 E− 241.81325 122.7 1.4
J=5–4, K=4 A± 241.80650 115.2 1.5
J=5–4, K=0 A+ 241.79143 34.8 4.0
J=5–4, K=1 E− 241.76722 40.4 3.9
J=5–4, K=0 E+ 241.70021 47.9 4.0

CH3OH J=2–1, K=0 E+ 96.74455 20.1 1.6
J=2–1, K=0 A+ 96.74137 7.0 1.6
J=2–1, K=1 E− 96.73936 12.5 1.2

c-C3H2 32,1–21,2 (ortho) 244.22216 18.2 7.3

10 For IC348-3, the C18O integrated intensity did not meet the above criteria.
Since the systemic velocity of the off-position is shifted by ∼1.5 kms−1 from
the systemic velocity of IC348-3, the influence on the analysis in this study
would be negligible.
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hyperfine component are missing for some sources, because the
Gaussian fit was unsuccessful due to a poor S/N. For
NGC1333-1 and NGC1333-16, the line shapes of the C2H
lines are quite different from those of the other sources; i.e., the

intensities are weaker and the velocity widths are broader
(dv∼2.6 km s−1) than in the other sources. The C2H emission
toward NGC1333-1 and NGC1333-16 may be affected by
the protostellar activities within the cores (e.g., molecular

Figure 1. Line profiles of CH3OH (J=5–4, K=1, E−) and C2H (N=3–2, J=5/2–3/2) observed with IRAM30m toward NGC1333-1, NGC1333-6, B1-3,
B1-5, and L1448-3. Two hyperfine components, F=2–1 (left) and F=3–2 (right), are observed.
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outflows). For the other sources, the velocity widths of the C2H
emission mostly range from 0.6 to 1.5kms−1, indicating that
the C2H emission would mainly originate from protostellar
envelopes or cavity walls of low-velocity outflows, rather than
the main bodies of molecular outflows (e.g., Oya et al. 2014;
Sakai et al. 2014a).

The c-C3H2 (32,1–21,2) line at 244GHz was detected toward
30 sources, as shown in Figure 4. The line parameters obtained
with the Gaussian fit are summarized in Table 7. For this line,
the upper state energy is 18K, and the critical density is
106cm−3. Hence, this line traces a moderately dense region.
c-C3H2 is a carbon-chain related molecule, and traces the
protostellar envelope as C2H (Sakai et al. 2010, 2014b;

Yoshida et al. 2015). The results show that the intensity of the
32,1–21,2 line differs from source to source. The velocity widths
of the c-C3H2 line are similar to those of C2H. Therefore, the
c-C3H2 and C2H emission likely comes from almost the same
region in each source.

3.2. Correlation of Integrated Intensities between C2H and
CH3OH

A correlation plot between the integrated intensities of the
C2H (N=3–2, J=5/2–3/2, F=3–2, Eu=25 K) and
CH3OH (J=5–4, K=1, E−, Eu=40 K) lines is then
prepared to understand how the intensity ratios differ among
the observed sources. We employ the third weakest hyperfine

Table 3
Physical Parameters

IDs Trot N(CH3OH) N(C2H) N(c-C3H2) N(C2H)/N(CH3OH) N(c-C3H2)/N(CH3OH)
(K) (1014 cm−2) (1013 cm−2) (1012 cm−2)

NGC1333-1 21±2 5.2±0.9 2.0±0.3 4.5±1.3 0.04±0.01 0.009±0.003
NGC1333-2 19±2 1.3±0.4 4.1±0.5 14±3 0.32±0.10 0.11±0.04
NGC1333-3 14±1 1.2±0.2 9.0±1.1 5.4±1.1 0.72±0.11 0.04±0.01
NGC1333-4 12±1 1.5±0.2 4.1±0.4 2.9±1.0 0.27±0.04 0.019±0.007
NGC1333-5 9±1 1.9±0.4 7.6±0.8 6.0±1.2 0.41±0.06 0.032±0.008
NGC1333-6 9±1 0.3±0.1 11±1 22±3 3.9±1.6 0.80±0.34
NGC1333-7 11±1 3.0±0.8 4.6±0.7 6.0±1.4 0.15±0.03 0.020±0.005
NGC1333-8 10±1 1.1±0.4 7.1±0.9 5.0±1.4 0.66±0.14 0.05±0.02
NGC1333-9 14±3 0.2±0.1 4.6±1.2 <1.9 2.1±1.2 0.09±0.05
NGC1333-10 13±2 0.2±0.07 0.9±0.3 <1.9 0.50±0.26 0.11±0.05
NGC1333-11 10±1 0.9±0.1 1.6±0.3 2.1±0.7 0.18±0.04 0.024±0.009
NGC1333-12 10±1 0.1±0.04 0.8±0.2 <1.5 0.72±0.37 0.14±0.06
NGC1333-13 14±2 0.3±0.07 0.8±0.2 <1.3 0.23±0.07 0.039±0.009
NGC1333-14 11±1 1.3±0.1 1.7±0.2 3.3±0.8 0.14±0.02 0.026±0.007
NGC1333-15 16±2 0.8±0.1 0.5±0.2 <1.5 0.07±0.03 0.020±0.005
NGC1333-16 21a 2.3±0.5 1.8±0.2 5.0±0.6 0.08±0.02 0.022±0.005
NGC1333-17 19b 0.5±0.1 7.4±0.6 8.9±0.8 1.7±0.3 0.20±0.04
L1448-1 9±1 1.4±0.3 12±1 31±4 0.84±0.18 0.23±0.05
L1448-2 13±1 2.9±0.3 16±2 24±3 0.57±0.08 0.09±0.01
L1448-3 14±1 0.8±0.2 4.6±0.6 12±2 0.60±0.14 0.15±0.04
L1448-4 10±1 1.9±0.2 12±1 10±1 0.64±0.09 0.05±0.01
L1448-5 10±1 2.1±0.2 2.1±0.4 7.4±1.2 0.10±0.02 0.034±0.007
IC348-1 11±1 1.3±0.2 5.0±0.5 11±2 0.38±0.06 0.08±0.02
IC348-2 12±1 0.6±0.1 7.0±0.7 12±2 1.2±0.23 0.21±0.04
IC348-3 10±1 0.3±0.1 3.2±0.6 <1.6 0.96±0.35 0.05±0.02
IC348-4 13±1 0.6±0.1 4.2±0.5 6.7±1.1 0.69±0.13 0.11±0.02
Barnard 5 10±1 0.5±0.1 9.0±1.1 9.4±1.9 1.9±0.5 0.20±0.06
B1-1 9±1 0.8±0.1 4.3±0.5 14±2 0.55±0.12 0.18±0.04
B1-2 9±1 0.8±0.1 7.3±0.8 12±2 0.96±0.19 0.16±0.03
B1-3 11±1 4.2±0.4 3.4±0.4 5.9±1.2 0.08±0.01 0.014±0.003
B1-4 9±1 0.8±0.2 8.3±1.2 13±2 1.1±0.3 0.18±0.05
B1-5 10±1 0.4±0.1 3.1±0.5 5.2±1.2 0.93±0.34 0.16±0.06
L1455-1 9±1 <0.2 6.0±1.1 7.7±1.6 3.1±1.5 0.39±0.20
L1455-2 14±1 0.7±0.1 5.4±0.7 9.0±1.7 0.74±0.15 0.12±0.03
L1455-3 8±1 0.3±0.1 6.4±0.9 5.1±1.2 2.0±0.7 0.16±0.07
L1455-4 9±1 0.5±0.1 3.5±0.6 1.8±0.8 0.78±0.26 0.04±0.02

Reference
L1527 8±1 0.8±0.1 33±3 49±3 4.1±0.5 0.60±0.07

Notes. Rotation temperatures are derived by the rotation diagram method from the CH3OH (J=2–1) and CH3OH (J=5–4) lines. Column densities are derived from
the CH3OH (J=5–4, K=1, E−), C2H (N=3–2, J=5/2–3/2, F=3–2), and c-C3H2 (32,1–21,2) lines. Error bars are calculated for the rms noise and do not
include calibration uncertainty (20%). As a reference, the column densities of L1527 are derived with the available IRAM30 m/NRO45 m data set.
a A rotation temperature of NGC1333-1 is applied due to the lack of NRO data. The column density changes within 10% for the change in the assumed rotation
temperature of±5K.
b A rotation temperature of NGC1333-2 is applied due to the lack of NRO data. The column density changes within 10% for the change in the assumed rotation
temperature of±5K.
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Table 4
Line Parameters of the CH3OH (J=5–4) Lines Observed with IRAM 30m

IDs Transition TMB
a dvb ò T dvMB eff

c ò T dvMB
d rmse VLSR

J, K (K) (km s−1) (K km s−1) (K km s−1) (K) (km s−1)

NGC1333-1 J=5–4, K=2 E− 0.98 3.23 (0.49) 2.45 (0.33) 5.04 (0.49) 0.13 6.6
J=5–4, K=2 A+ 0.22 2.53 (1.94) 0.54 (0.33) 0.85 (0.43) 0.13 6.2
J=5–4, K=1 E+ 0.58 2.91 (0.81) 1.44 (0.33) 2.61 (0.47) 0.13 7.0
J=5–4, K=3 E− 0.08 3.66 (6.23)f 0.19 (0.33)f 0.38 (0.45)f 0.13 7.1
J=5–4, K=2 A− 0.27 4.40 (2.32)f 0.67 (0.33)f 1.65 (0.59)f 0.13 6.2
J=5–4, K=3 A± 0.34 3.98 (0.84) 0.87 (0.33) 2.18 (0.08) 0.13 5.8
J=5–4, K=0 A+ 2.20 2.87 (0.10) 5.41 (0.33) 10.4 (0.08) 0.13 6.7
J=5–4, K=1 E− 1.94 2.82 (0.11) 4.84 (0.33) 8.56 (0.08) 0.13 6.8
J=5–4, K=0 E+ 0.94 3.68 (0.31) 2.38 (0.33) 4.89 (0.08) 0.13 6.9

NGC1333-2 J=5–4, K=2 E− 0.49 3.05 (0.44) 0.67 (0.20) 2.24 (0.22) 0.15 6.5
J=5–4, K=2 A+ 0.27 2.79 (0.70) 0.37 (0.20) 1.08 (0.21) 0.15 5.9
J=5–4, K=1 E+ 0.34 2.95 (0.62) 0.47 (0.20) 1.47 (0.22) 0.15 6.8
J=5–4, K=3 E− 0.23 2.54 (0.65) 0.32 (0.20) 0.79 (0.19) 0.15 6.2
J=5–4, K=2 A− 0.30 3.51 (0.62) 0.42 (0.20) 1.47 (0.22) 0.15 5.6
J=5–4, K=3 A± 0.31 2.71 (0.62) 0.43 (0.20) 1.14 (0.23) 0.15 5.5
J=5–4, K=4 E+ 0.18 2.02 (1.0) 0.25 (0.20) 0.60 (0.22) 0.15 6.1
J=5–4, K=4 E− 0.19 2.58 (0.79) 0.26 (0.20) 0.67 (0.17) 0.15 6.4
J=5–4, K=4 A± 0.22 2.48 (0.65) 0.30 (0.20) 0.75 (0.16) 0.15 6.0
J=5–4, K=0 A+ 1.02 2.68 (0.22) 1.41 (0.20) 4.53 (0.20) 0.15 7.3
J=5–4, K=1 E− 0.84 3.05 (0.28) 1.17 (0.20) 4.08 (0.23) 0.15 7.4
J=5–4, K=0 E+ 0.41 3.04 (0.53) 0.57 (0.20) 1.99 (0.21) 0.15 6.9

NGC1333-3 J=5–4, K=2 E− 0.16 0.92 (0.11) 0.16 (0.03) 0.18 (0.02) 0.03 7.3
J=5–4, K=0 A+ 1.02 1.06 (0.02) 1.03 (0.03) 1.33 (0.02) 0.03 7.5
J=5–4, K=1 E− 0.84 0.98 (0.03) 0.84 (0.03) 1.07 (0.02) 0.03 7.7
J=5–4, K=0 E+ 0.18 0.92 (0.13) 0.18 (0.03) 0.18 (0.02) 0.03 7.8

NGC1333-4 J=5–4, K=2 E− 0.14 0.63 (0.12) 0.15 (0.03) 0.14 (0.02) 0.03 7.9
J=5–4, K=0 A+ 0.95 1.24 (0.02) 0.95 (0.03) 1.56 (0.02) 0.03 8.2
J=5–4, K=1 E− 0.81 1.17 (0.03) 0.82 (0.03) 1.25 (0.02) 0.03 8.4
J=5–4, K=0 E+ 0.15 1.04 (0.18) 0.15 (0.03) 0.19 (0.02) 0.03 8.4

NGC1333-5 J=5–4, K=0 A+ 0.68 0.76 (0.04) 0.67 (0.03) 0.69 (0.02) 0.03 7.5
J=5–4, K=1 E− 0.61 0.72 (0.04) 0.60 (0.03) 0.65 (0.02) 0.03 7.6
J=5–4, K=0 E+ 0.14 0.62 (0.12) 0.14 (0.03) 0.21 (0.02) 0.03 7.6

NGC1333-6 J=5–4, K=0 A+ 0.11 1.82 (0.31) 0.09 (0.02) 0.24 (0.03) 0.03 6.8
J=5–4, K=1 E− 0.10 2.27 (0.32) 0.09 (0.02) 0.23 (0.03) 0.03 7.2
J=5–4, K=0 E+ 0.04 4.00 (1.08) 0.03 (0.02) 0.17 (0.04) 0.03 7.0

NGC1333-7 J=5–4, K=0 A+ 1.13 1.24 (0.02) 1.75 (0.04) 1.86 (0.02) 0.03 7.3
J=5–4, K=1 E− 0.87 1.28 (0.03) 1.35 (0.04) 1.51 (0.02) 0.03 7.4
J=5–4, K=0 E+ 0.11 1.52 (0.27) 0.17 (0.04) 0.22 (0.03) 0.03 7.3

NGC1333-8 J=5–4, K=0 A+ 0.43 2.03 (0.07) 0.49 (0.03) 1.11 (0.03) 0.03 6.8
J=5–4, K=1 E− 0.33 2.04 (0.10) 0.38 (0.03) 0.89 (0.03) 0.03 6.9
J=5–4, K=0 E+ 0.06 2.11 (0.42) 0.07 (0.03) 0.17 (0.03) 0.03 7.0

NGC1333-9 J=5–4, K=0 A+ 0.08 1.00 (0.68) 0.08 (0.04) 0.16 (0.04) 0.03 7.2
J=5–4, K=1 E− 0.09 0.89 (0.16) 0.15 (0.04) 0.14 (0.02) 0.03 7.1

NGC1333-10 J=5–4, K=0 A+ 0.07 1.87 (0.26) 0.09 (0.03) 0.12 (0.02) 0.02 7.3
J=5–4, K=1 E− 0.08 1.00 (0.18) 0.11 (0.03) 0.05 (0.01) 0.02 7.4

NGC1333-11 J=5–4, K=0 A+ 0.67 1.08 (0.02) 0.40 (0.01) 0.92 (0.01) 0.02 8.2
J=5–4, K=1 E− 0.52 1.12 (0.03) 0.31 (0.01) 0.60 (0.02) 0.02 8.4
J=5–4, K=0 E+ 0.07 1.43 (0.22) 0.04 (0.01) 0.09 (0.02) 0.03 8.3

NGC1333-12 J=5–4, K=0 A+ 0.10 0.48 (0.10) 0.06 (0.01) 0.04 (0.01) 0.02 7.2
J=5–4, K=1 E− 0.07 0.77 (0.22) 0.04 (0.01) 0.07 (0.01) 0.02 7.4

NGC1333-13 J=5–4, K=0 A+ 0.50 0.69 (0.03) 0.28 (0.01) 0.43 (0.01) 0.02 7.2
J=5–4, K=1 E− 0.43 0.69 (0.03) 0.24 (0.01) 0.43 (0.01) 0.02 7.3

NGC1333-14 J=5–4, K=2 E− 0.09 0.94 (0.18) 0.07 (0.02) 0.06 (0.02) 0.02 7.1
J=5–4, K=0 A+ 0.91 1.17 (0.02) 0.80 (0.02) 1.27 (0.02) 0.02 7.6
J=5–4, K=1 E− 0.70 1.20 (0.02) 0.61 (0.02) 0.99 (0.02) 0.02 7.7
J=5–4, K=0 E+ 0.12 1.17 (0.18) 0.10 (0.02) 0.18 (0.02) 0.02 7.8

NGC1333-15 J=5–4, K=0 A+ 0.81 0.72 (0.02) 0.70 (0.02) 0.76 (0.01) 0.02 7.8
J=5–4, K=1 E− 0.67 0.68 (0.02) 0.58 (0.02) 0.61 (0.01) 0.02 8.0
J=5–4, K=0 E+ 0.07 1.15(0.31) 0.06 (0.02) 0.11 (0.02) 0.02 8.0

NGC1333-16 J=5–4, K=2 E− 0.36 4.91 (1.96) 0.77 (0.36) 2.23 (0.52) 0.11 6.2
J=5–4, K=1 E+ 0.21 4.72 (3.29) 0.45 (0.36) 1.17 (0.53) 0.11 6.7
J=5–4, K=2 A− 0.08 4.43 (7.02)f 0.16 (0.36)f 0.35 (0.46)f 0.11 6.3
J=5–4, K=3 A± 0.09 5.50 (6.57)f 0.20 (0.36)f 0.56 (0.50)f 0.11 6.1
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Table 4
(Continued)

IDs Transition TMB
a dvb ò T dvMB eff

c ò T dvMB
d rmse VLSR

J, K (K) (km s−1) (K km s−1) (K km s−1) (K) (km s−1)

J=5–4, K=0 A+ 1.21 4.88 (0.72) 2.57 (0.36) 8.44 (0.59) 0.11 6.4
J=5–4, K=1 E− 1.02 5.11 (0.78) 2.17 (0.36) 7.76 (0.71) 0.11 6.5
J=5–4, K=0 E+ 0.37 5.01 (0.78) 0.79 (0.36) 2.31 (0.61) 0.11 6.5

NGC1333-17 J=5–4, K=2 E− 0.17 3.11 (0.39) 0.20 (0.05) 0.64 (0.22) 0.03 7.5
J=5–4, K=2 A+ 0.11 3.62 (0.55) 0.13 (0.05) 0.46 (0.21) 0.03 7.0
J=5–4, K=1 E+ 0.15 3.01 (0.39) 0.18 (0.05) 0.51 (0.22) 0.03 7.9
J=5–4, K=3 E− 0.10 3.43 (0.61) 0.12 (0.05) 0.41 (0.19) 0.03 7.5
J=5–4, K=2 A− 0.12 4.61 (0.57) 0.14 (0.05) 0.63 (0.22) 0.03 6.7
J=5–4, K=3 A± 0.12 6.00 (0.55) 0.14 (0.05) 0.78 (0.23) 0.03 8.1
J=5–4, K=4 E+ 0.09 3.15 (0.50) 0.11 (0.05) 0.32 (0.17) 0.03 7.7
J=5–4, K=0 A+ 0.41 1.29 (0.08) 0.48 (0.05) 0.71 (0.20) 0.03 7.8
J=5–4, K=1 E− 0.34 1.32 (0.10) 0.40 (0.05) 0.68 (0.23) 0.03 7.9
J=5–4, K=0 E+ 0.16 2.84 (0.50) 0.19 (0.05) 0.61 (0.21) 0.03 7.8

L1448-1 J=5–4, K=0 A+ 0.28 1.08 (0.12) 0.43 (0.05) 0.35 (0.01) 0.03 4.1
J=5–4, K=1 E− 0.25 1.17 (0.11) 0.38 (0.05) 0.34 (0.01) 0.03 4.3
J=5–4, K=0 E+ 0.12 0.30 (0.10) 0.19 (0.05) 0.08 (0.01) 0.03 4.5

L1448-2 J=5–4, K=2 E− 0.24 1.46 (0.15) 0.45 (0.05) 0.44 (0.02) 0.03 4.2
J=5–4, K=1 E+ 0.16 1.14 (0.16) 0.30 (0.05) 0.29 (0.02) 0.03 4.7
J=5–4, K=0 A+ 1.15 1.28 (0.03) 2.16 (0.05) 2.22 (0.03) 0.03 4.2
J=5–4, K=1 E− 0.94 1.21 (0.03) 1.76 (0.05) 1.46 (0.02) 0.03 4.3
J=5–4, K=0 E+ 0.34 1.33 (0.09) 0.63 (0.05) 0.54 (0.03) 0.03 4.5

L1448-3 J=5–4, K=2 E− 0.16 2.65 (0.48) 0.17 (0.05) 0.67 (0.06) 0.05 4.6
J=5–4, K=1 E+ 0.13 1.30 (0.36) 0.14 (0.05) 0.27 (0.04) 0.05 5.0
J=5–4, K=0 A+ 0.58 1.18 (0.09) 0.63 (0.05) 1.04 (0.04) 0.05 4.6
J=5–4, K=1 E− 0.48 1.14 (0.11) 0.52 (0.05) 0.99 (0.04) 0.05 4.8
J=5–4, K=0 E+ 0.24 1.16 (0.26) 0.26 (0.05) 0.56 (0.05) 0.05 4.9

L1448-4 J=5–4, K=2 E− 0.10 1.21 (0.33) 0.10 (0.03) 0.21 (0.03) 0.03 3.3
J=5–4, K=0 A+ 0.82 0.72 (0.03) 0.82 (0.03) 0.78 (0.02) 0.03 3.7
J=5–4, K=1 E− 0.71 0.68 (0.03) 0.71 (0.03) 0.69 (0.02) 0.03 3.9
J=5–4, K=0 E+ 0.09 1.38 (0.69) 0.09 (0.03) 0.13 (0.04) 0.03 3.8

L1448-5 J=5–4, K=2 E− 0.06 3.27 (0.91) 0.05 (0.03) 0.19 (0.03) 0.04 3.6
J=5–4, K=1 E+ 0.12 0.56 (0.25) 0.08 (0.03) 0.04 (0.03) 0.04 4.1
J=5–4, K=0 A+ 1.32 0.97 (0.03) 0.87 (0.03) 2.37 (0.03) 0.04 3.8
J=5–4, K=1 E− 1.20 0.86 (0.03) 0.80 (0.03) 1.89 (0.03) 0.04 3.9
J=5–4, K=0 E+ 0.27 0.60 (0.13) 0.18 (0.03) 0.27 (0.03) 0.04 3.9

IC348-1 J=5–4, K=2 E− 0.07 0.96 (0.40) 0.07 (0.03) 0.09 (0.02) 0.03 8.3
J=5–4, K=0 A+ 0.93 0.63 (0.02) 0.81 (0.03) 0.81 (0.02) 0.03 8.6
J=5–4, K=1 E− 0.76 0.62 (0.03) 0.65 (0.03) 0.74 (0.02) 0.03 8.7
J=5–4, K=0 E+ 0.13 1.04 (0.17) 0.10 (0.03) 0.13 (0.02) 0.03 8.8

IC348-2 J=5–4, K=2 E− 0.07 1.59 (0.29) 0.07 (0.03) 0.12 (0.02) 0.03 8.2
J=5–4, K=0 A+ 0.36 0.80 (0.06) 0.40 (0.03) 0.37 (0.02) 0.02 8.4
J=5–4, K=1 E− 0.28 0.74 (0.07) 0.31 (0.03) 0.32 (0.02) 0.02 8.5
J=5–4, K=0 E+ 0.06 1.29 (0.47) 0.07 (0.03) 0.10 (0.02) 0.03 8.5

IC348-3 J=5–4, K=0 A+ 0.16 1.16 (0.10) 0.18 (0.03) 0.15 (0.02) 0.02 9.9
J=5–4, K=1 E− 0.11 1.38 (0.16) 0.13 (0.03) 0.17 (0.02) 0.02 10

IC348-4 J=5–4, K=2 E− 0.09 0.36 (0.11) 0.08 (0.02) 0.06 (0.01) 0.02 7.6
J=5–4, K=0 A+ 0.46 0.76 (0.04) 0.40 (0.02) 0.52 (0.01) 0.02 8.0
J=5–4, K=1 E− 0.41 0.69 (0.04) 0.36 (0.02) 0.46 (0.02) 0.02 8.2

Barnard5 J=5–4, K=0 A+ 0.26 0.80 (0.07) 0.22 (0.02) 0.26 (0.02) 0.02 9.6
J=5–4, K=1 E− 0.19 0.80 (0.08) 0.16 (0.02) 0.18 (0.02) 0.02 9.8

B1-1 J=5–4, K=2 E− 0.07 4.64 (0.24) 0.07 (0.03) 0.46 (0.09) 0.02 7.0
J=5–4, K=1 E+ 0.05 3.33(0.24) 0.06 (0.03) 0.20 (0.03) 0.02 6.5
J=5–4, K=0 A+ 0.25 4.52 (0.24) 0.39 (0.03) 1.75 (0.07) 0.02 6.2
J=5–4, K=1 E− 0.21 4.54 (0.24) 0.23 (0.03) 1.47 (0.11) 0.02 6.9
J=5–4, K=0 E+ 0.08 2.66 (0.24) 0.08 (0.03) 0.21 (0.04) 0.02 6.5

B1-2 J=5–4, K=0 A+ 0.42 0.66 (0.04) 0.29 (0.02) 0.33 (0.01) 0.02 6.2
J=5–4, K=1 E− 0.30 0.68 (0.05) 0.20 (0.02) 0.27 (0.01) 0.02 6.1

B1-3 J=5–4, K=2 E− 0.18 1.99 (0.22) 0.22 (0.05) 0.40 (0.04) 0.04 5.2
J=5–4, K=1 E+ 0.10 1.89 (0.36) 0.12 (0.05) 0.20 (0.04) 0.04 5.7
J=5–4, K=0 A+ 1.96 1.45 (0.07) 2.50 (0.05) 3.99 (0.04) 0.04 5.8
J=5–4, K=1 E− 1.65 1.37 (0.03) 2.10 (0.05) 3.16 (0.03) 0.04 5.9
J=5–4, K=0 E+ 0.26 2.31 (0.18) 0.33 (0.05) 0.66 (0.04) 0.04 5.6

B1-4 J=5–4, K=0 A+ 0.29 0.78 (0.10) 0.31 (0.03) 0.33 (0.02) 0.03 6.5
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Table 4
(Continued)

IDs Transition TMB
a dvb ò T dvMB eff

c ò T dvMB
d rmse VLSR

J, K (K) (km s−1) (K km s−1) (K km s−1) (K) (km s−1)

J=5–4, K=1 E− 0.21 0.71 (0.09) 0.22 (0.03) 0.18 (0.02) 0.03 6.5
B1-5 J=5–4, K=0 A+ 0.17 0.49 (0.11) 0.16 (0.02) 0.16 (0.02) 0.03 5.6

J=5–4, K=1 E− 0.12 0.82 (0.21) 0.11 (0.02) 0.11 (0.01) 0.03 6.6
L1455-1 L L L 0.05 (0.02) 0.06 0.02 L
L1455-2 J=5–4, K=2 E− 0.09 4.65 (0.66) 0.11 (0.03) 0.59 (0.04) 0.03 4.1

J=5–4, K=0 A+ 0.47 1.38 (0.07) 0.57 (0.03) 0.89 (0.02) 0.03 4.4
J=5–4, K=1 E− 0.40 1.26 (0.07) 0.49 (0.03) 0.92 (0.02) 0.03 4.6
J=5–4, K=0 E+ 0.07 5.97 (0.85) 0.08 (0.03) 0.44 (0.04) 0.03 4.1

L1455-3 J=5–4, K=0 A+ 0.20 0.87 (0.09) 0.16 (0.02) 0.18 (0.02) 0.02 4.4
J=5–4, K=1 E− 0.10 1.69 (0.23) 0.08 (0.02) 0.15 (0.02) 0.02 4.7

L1455-4 J=5–4, K=0 A+ 0.14 1.06 (0.13) 0.16 (0.02) 0.16 (0.02) 0.02 4.7
J=5–4, K=1 E− 0.12 0.78 (0.15) 0.14 (0.02) 0.12 (0.02) 0.02 4.8

Notes. The errors are 1σ. The upper limit to the integrated intensity is calculated as ò s< ´ ( )T dv dv dv3MB res dvres, where dv is the assumed line width

(0.8 km s−1) and dvres is the velocity resolution per channel.
a Obtained by the Gaussian fit.
b The wing components are excluded in the Gaussian fit.
c Derived using the C2H velocity width.
d The wing components are included when calculating the integrated intensity.
e The rms noise averaged over the line width.
f The error in the Gaussian fitting is large.

Table 5
Line Parameters of the CH3OH (J=2–1) Lines Observed with the Nobeyama 45 m Telescope

IDs Transition TMB
a dvb ò T dvMB eff

c ò T dvMB
d rmse VLSR

J, K (K) (km s−1) (K km s−1) (K km s−1) (K) (km s−1)

NGC1333-1 J=2–1, K=1 E− 1.40 2.16 (0.04) 3.50 (0.04) 3.53 (0.04) 0.02 7.7
J=2–1, K=0 A+ 1.97 2.15 (0.04) 4.92 (0.04) 5.94 (0.04) 0.02 7.5
J=2–1, K=0 E+ 0.47 2.56 (0.04) 1.18 (0.04) 1.73 (0.04) 0.02 6.8

NGC1333-2 J=2–1, K=1 E− 1.38 1.32 (0.02) 1.91 (0.02) 2.57 (0.02) 0.02 7.7
J=2–1, K=0 A+ 1.73 1.37 (0.02) 2.39 (0.02) 3.32 (0.02) 0.02 7.9
J=2–1, K=0 E+ 0.27 1.56 (0.02) 0.38 (0.02) 0.62 (0.02) 0.02 7.6

NGC1333-3 J=2–1, K=1 E− 0.82 1.21 (0.02) 0.82 (0.02) 1.15 (0.02) 0.02 7.8
J=2–1, K=0 A+ 1.27 1.14 (0.02) 1.27 (0.02) 1.69 (0.02) 0.02 7.9
J=2–1, K=0 E+ 0.22 1.13 (0.02) 0.22 (0.02) 0.23 (0.02) 0.02 7.9

NGC1333-4 J=2–1, K=1 E− 1.18 1.19 (0.02) 1.19 (0.02) 1.68 (0.02) 0.02 8.5
J=2–1, K=0 A+ 1.74 1.18 (0.02) 1.76 (0.02) 2.52 (0.02) 0.02 8.6
J=2–1, K=0 E+ 0.35 1.01 (0.02) 0.35 (0.02) 0.42 (0.02) 0.02 8.7

NGC1333-5 J=2–1, K=1 E− 1.54 0.98 (0.01) 1.52 (0.01) 1.83 (0.01) 0.01 7.7
J=2–1, K=0 A+ 2.03 1.04(0.02) 2.00 (0.01) 2.45 (0.02) 0.01 7.9
J=2–1, K=0 E+ 0.32 0.92 (0.01) 0.31 (0.01) 0.38 (0.01) 0.01 7.9

NGC1333-6 J=2–1, K=1 E− 0.23 1.17 (0.02) 0.21 (0.01) 0.32 (0.02) 0.02 7.4
J=2–1, K=0 A+ 0.29 1.02 (0.02) 0.26 (0.01) 0.39 (0.02) 0.02 7.2

NGC1333-7 J=2–1, K=1 E− 2.01 1.34 (0.02) 3.11 (0.02) 3.03 (0.02) 0.02 7.7
J=2–1, K=0 A+ 2.64 1.42 (0.02) 4.08 (0.02) 4.31 (0.02) 0.02 7.5
J=2–1, K=0 E+ 0.38 1.32 (0.02) 0.58 (0.02) 0.58 (0.02) 0.02 7.6

NGC1333-8 J=2–1, K=1 E− 1.02 1.61 (0.02) 1.17 (0.02) 1.89 (0.02) 0.02 7.4
J=2–1, K=0 A+ 1.45 1.54 (0.02) 1.68 (0.02) 2.54 (0.02) 0.02 7.5
J=2–1, K=0 E+ 0.15 1.78 (0.03) 0.17 (0.02) 0.31 (0.03) 0.02 7.6

NGC1333-9 J=2–1, K=1 E− 0.09 1.98 (0.03) 0.14 (0.03) 0.18 (0.03) 0.02 8.1
J=2–1, K=0 A+ 0.11 1.92 (0.03) 0.18 (0.03) 0.19 (0.03) 0.02 7.2

NGC1333-10 J=2–1, K=1 E− 0.09 1.91 (0.03) 0.12 (0.02) 0.20 (0.03) 0.02 8.1
J=2–1, K=0 A+ 0.12 2.36 (0.04) 0.16 (0.02) 0.25 (0.04) 0.02 7.9

NGC1333-11 J=2–1, K=1 E− 1.41 1.21 (0.02) 0.85 (0.01) 1.90 (0.02) 0.01 8.5
J=2–1, K=0 A+ 1.84 1.24 (0.02) 1.12 (0.01) 2.64 (0.02) 0.01 8.6
J=2–1, K=0 E+ 0.33 1.14 (0.02) 0.20 (0.01) 0.43 (0.02) 0.01 8.7

NGC1333-12 J=2–1, K=1 E− 0.15 0.86 (0.01) 0.08 (0.01) 0.17 (0.01) 0.03 7.8
J=2–1, K=0 A+ 0.20 1.02 (0.02) 0.12 (0.01) 0.29 (0.02) 0.03 7.5

NGC1333-13 J=2–1, K=1 E− 0.39 0.96 (0.02) 0.22 (0.01) 0.41 (0.01) 0.02 7.7
J=2–1, K=0 A+ 0.62 0.95 (0.02) 0.35 (0.01) 0.59 (0.01) 0.02 7.5
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Table 5
(Continued)

IDs Transition TMB
a dvb ò T dvMB eff

c ò T dvMB
d rmse VLSR

J, K (K) (km s−1) (K km s−1) (K km s−1) (K) (km s−1)

NGC1333-14 J=2–1, K=1 E− 1.08 1.32 (0.02) 0.95 (0.01) 1.57 (0.02) 0.02 7.7
J=2–1, K=0 A+ 1.57 1.32 (0.02) 1.38 (0.01) 2.31 (0.02) 0.02 7.9
J=2–1, K=0 E+ 0.24 1.65 (0.03) 0.21 (0.01) 0.40 (0.02) 0.02 7.9

NGC1333-15 J=2–1, K=1 E− 0.24 0.95 (0.02) 0.21 (0.01) 0.24 (0.01) 0.02 7.4
J=2–1, K=0 A+ 0.30 1.03 (0.02) 0.26 (0.01) 0.35 (0.02) 0.02 7.5

L1448-1 J=2–1, K=1 E− 0.93 1.17 (0.02) 1.45 (0.03) 1.28 (0.02) 0.02 4.5
J=2–1, K=0 A+ 1.22 1.18 (0.02) 1.96 (0.03) 1.80 (0.02) 0.02 4.6
J=2–1, K=0 E+ 0.23 1.14 (0.02) 0.35 (0.03) 0.39 (0.02) 0.02 4.7

L1448-2 J=2–1, K=1 E− 1.34 1.03 (0.02) 2.52 (0.03) 1.74 (0.02) 0.02 4.5
J=2–1, K=0 A+ 1.73 1.09 (0.02) 3.26 (0.03) 2.99 (0.02) 0.02 4.3
J=2–1, K=0 E+ 0.39 1.56 (0.03) 0.74 (0.03) 1.32 (0.03) 0.02 4.7

L1448-3 J=2–1, K=1 E− 0.64 1.77 (0.03) 0.69 (0.02) 2.58 (0.03) 0.02 4.8
J=2–1, K=0 A+ 0.74 1.71 (0.03) 0.80 (0.02) 1.70 (0.03) 0.02 5.0
J=2–1, K=0 E+ 0.08 1.30 (0.02) 0.09 (0.02) 0.11 (0.02) 0.02 5.0

L1448-4 J=2–1, K=1 E− 1.92 0.81 (0.01) 1.91 (0.02) 1.74 (0.01) 0.02 4.1
J=2–1, K=0 A+ 2.39 0.87 (0.01) 2.38 (0.02) 2.34 (0.01) 0.02 4.3
J=2–1, K=0 E+ 0.35 0.84 (0.01) 0.35 (0.02) 0.34 (0.01) 0.02 4.3

L1448-5 J=2–1, K=1 E− 2.31 1.05 (0.02) 1.57 (0.01) 5.19 (0.02) 0.02 4.1
J=2–1, K=0 A+ 2.65 1.10 (0.02) 1.80 (0.01) 6.27 (0.02) 0.02 4.3
J=2–1, K=0 E+ 0.49 0.92 (0.02) 0.33 (0.01) 1.12 (0.02) 0.02 4.3

IC348-1 J=2–1, K=1 E− 0.93 1.25 (0.02) 0.80 (0.01) 1.21 (0.02) 0.02 9.1
J=2–1, K=0 A+ 1.31 1.24 (0.02) 1.13 (0.01) 1.81 (0.02) 0.02 9.3
J=2–1, K=0 E+ 0.25 1.14 (0.02) 0.22 (0.01) 0.40 (0.02) 0.02 9.3

IC348-2 J=2–1, K=1 E− 0.49 0.90 (0.01) 0.53 (0.02) 0.49 (0.01) 0.02 8.8
J=2–1, K=0 A+ 0.69 0.89 (0.01) 0.76 (0.02) 0.77 (0.01) 0.02 8.5
J=2–1, K=0 E+ 0.13 0.98 (0.02) 0.15 (0.02) 0.16 (0.01) 0.02 8.9

IC348-3 J=2–1, K=1 E− 0.24 1.48 (0.02) 0.26 (0.02) 0.40 (0.05) 0.02 10
J=2–1, K=0 A+ 0.31 1.59 (0.02) 0.35 (0.02) 0.57 (0.05) 0.02 10

IC348-4 J=2–1, K=1 E− 0.72 0.88 (0.01) 0.64 (0.01) 0.76 (0.01) 0.02 8.4
J=2–1, K=0 A+ 1.11 0.84 (0.01) 0.98 (0.01) 1.07 (0.01) 0.02 8.5
J=2–1, K=0 E+ 0.20 0.83 (0.01) 0.18 (0.01) 0.20 (0.01) 0.02 8.6

Barnard5 J=2–1, K=1 E− 0.43 1.00 (0.02) 0.36 (0.01) 0.43 (0.02) 0.02 9.9
J=2–1, K=0 A+ 0.60 1.02 (0.02) 0.51 (0.01) 0.63 (0.02) 0.02 9.7

B1-1 J=2–1, K=1 E− 1.16 1.35 (0.02) 1.25 (0.02) 1.94 (0.02) 0.02 6.5
J=2–1, K=0 A+ 1.60 1.27 (0.02) 1.72 (0.02) 2.44 (0.02) 0.02 6.3
J=2–1, K=0 E+ 0.18 1.33 (0.02) 0.19 (0.02) 0.25 (0.02) 0.02 6.3

B1-2 J=2–1, K=1 E− 1.33 0.86 (0.01) 0.90 (0.01) 1.25 (0.01) 0.02 6.5
J=2–1, K=0 A+ 1.62 0.93 (0.02) 1.10 (0.01) 1.64 (0.01) 0.02 6.7
J=2–1, K=0 E+ 0.18 0.89 (0.01) 0.12 (0.01) 0.15 (0.01) 0.02 6.7

B1-3 J=2–1, K=1 E− 2.24 1.16 (0.02) 2.86 (0.02) 3.23 (0.02) 0.02 6.5
J=2–1, K=0 A+ 2.97 1.19 (0.02) 3.80 (0.02) 4.47 (0.02) 0.02 6.3
J=2–1, K=0 E+ 0.45 1.22 (0.02) 0.58 (0.02) 0.66 (0.02) 0.02 6.3

B1-4 J=2–1, K=1 E− 0.66 0.90 (0.01) 0.72 (0.02) 0.63 (0.01) 0.02 7.2
J=2–1, K=0 A+ 0.98 0.88 (0.01) 1.06 (0.02) 0.86 (0.01) 0.02 7.0
J=2–1, K=0 E+ 0.10 0.80 (0.01) 0.11 (0.02) 0.09 (0.01) 0.02 7.1

B1-5 J=2–1, K=1 E− 0.29 0.92 (0.02) 0.27 (0.01) 0.34 (0.01) 0.02 7.2
J=2–1, K=0 A+ 0.40 1.10 (0.02) 0.37 (0.01) 0.53 (0.02) 0.02 7.0

L1455-1 J=2–1, K=1 E− 0.19 0.61 (0.01) 0.16 (0.01) 0.11 (0.01) 0.02 5.2f

J=2–1, K=0 A+ 0.22 0.79 (0.01) 0.18 (0.01) 0.17 (0.01) 0.02 5.4f

L1455-2 J=2–1, K=1 E− 0.34 1.24 (0.02) 0.41 (0.02) 0.55 (0.02) 0.02 4.8f

J=2–1, K=0 A+ 0.49 1.27 (0.02) 0.59 (0.02) 0.87 (0.02) 0.02 5.0f

L1455-3 J=2–1, K=1 E− 0.33 1.67 (0.03) 0.26 (0.01) 0.54 (0.03) 0.02 5.6f

J=2–1, K=0 A+ 0.49 1.65 (0.03) 0.40 (0.01) 0.78(0.02) 0.02 5.8f

L1455-4 J=2–1, K=1 E− 0.33 1.46 (0.02) 0.36 (0.02) 0.61 (0.02) 0.02 5.2f

J=2–1, K=0 A+ 0.45 1.41 (0.02) 0.50 (0.02) 0.88 (0.02) 0.02 5.0f

Notes.
a Obtained by the Gaussian fit.
b The wing components are excluded in the Gaussian fit.
c Derived using the C2H velocity widths.
d The wing components are included when calculating the integrated intensity.
e The rms noise averaged over the line width.
f Only for the L1455 region, VLSR is corrected by 9kms−1 due to a problem with the NRO 45m. It is recovered using the VLSR obtained by IRAM 30m.
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Table 6
Line Parameters of the C2H (N=3–2) Lines Observed with IRAM 30m

IDs Transition TMB
a dv ò T dvMB rmsb VLSR

J, F (K) (km s−1) (K km s−1) (K) (km s−1)

NGC1333-1 J=5/2–3/2, F=2–1 0.16 2.62 (0.20) 0.45 (0.02) 0.03 6.4
J=5/2–3/2, F=3–2 0.16 2.27 (0.20) 0.39 (0.02) 0.03 6.9
J=7/2–5/2, F=3–2 0.22 2.43 (0.20) 0.57 (0.02) 0.03 6.6
J=7/2–5/2, F=4–3 0.27 2.10 (0.20) 0.60 (0.02) 0.03 6.9

NGC1333-2 J=5/2–3/2, F=2–1 0.42 1.30 (0.07) 0.58 (0.02) 0.03 7.6
J=5/2–3/2, F=3–2 0.60 1.19 (0.04) 0.76 (0.02) 0.03 7.6
J=7/2–5/2, F=3–2 0.61 1.26 (0.05) 0.83 (0.02) 0.03 7.5
J=7/2–5/2, F=4–3 0.72 1.45 (0.04) 1.10 (0.03) 0.03 7.5

NGC1333-3 J=5/2–3/2, F=2–1 0.99 0.91 (0.22) 0.96 (0.05) 0.03 8.2
J=5/2–3/2, F=3–2 1.37 0.97 (0.22) 1.41 (0.05) 0.03 8.2
J=7/2–5/2, F=3–2 1.46 0.94 (0.22) 1.46 (0.05) 0.03 8.2
J=7/2–5/2, F=4–3 1.83 0.95 (0.22) 1.85 (0.05) 0.03 8.1

NGC1333-4 J=5/2–3/2, F=2–1 0.36 0.92 (0.06) 0.36 (0.02) 0.03 8.7
J=5/2–3/2, F=3–2 0.62 0.85 (0.03) 0.56 (0.02) 0.03 8.7
J=7/2–5/2, F=3–2 0.65 0.97 (0.03) 0.67 (0.02) 0.03 8.6
J=7/2–5/2, F=4–3 0.76 1.05 (0.03) 0.85 (0.02) 0.03 8.6

NGC1333-5 J=5/2–3/2, F=2–1 0.56 0.94 (0.04) 0.56 (0.02) 0.03 7.7
J=5/2–3/2, F=3–2 0.78 0.90 (0.03) 0.75 (0.02) 0.03 7.7
J=7/2–5/2, F=3–2 0.74 0.94 (0.03) 0.74 (0.02) 0.03 7.7
J=7/2–5/2, F=4–3 0.97 0.93 (0.02) 0.95 (0.02) 0.03 7.6

NGC1333-6 J=5/2–3/2, F=2–1 0.85 0.80 (0.02) 0.72 (0.02) 0.02 7.2
J=5/2–3/2, F=3–2 1.17 0.85 (0.02) 1.05 (0.02) 0.02 7.3
J=7/2–5/2, F=3–2 1.21 0.85 (0.02) 1.09 (0.02) 0.02 7.2
J=7/2–5/2, F=4–3 1.53 0.86 (0.01) 1.39 (0.02) 0.02 7.2

NGC1333-7 J=5/2–3/2, F=2–1 0.26 1.76 (0.22) 0.49 (0.02) 0.02 8.0
J=5/2–3/2, F=3–2 0.40 1.33 (0.22) 0.56 (0.02) 0.02 8.0
J=7/2–5/2, F=3–2 0.44 1.46 (0.22) 0.68 (0.02) 0.02 8.0
J=7/2–5/2, F=4–3 0.58 1.27 (0.22) 0.78 (0.02) 0.02 7.9

NGC1333-8 J=5/2–3/2, F=2–1 0.44 1.06 (0.04) 0.49 (0.02) 0.02 6.6
J=5/2–3/2, F=3–2 0.64 1.09 (0.03) 0.75 (0.02) 0.02 6.6
J=7/2–5/2, F=3–2 0.66 1.06 (0.03) 0.75 (0.02) 0.02 6.6
J=7/2–5/2, F=4–3 0.89 1.12 (0.02) 1.06 (0.02) 0.02 6.6

NGC1333-9 J=5/2–3/2, F=2–1 0.33 1.54 (0.07) 0.54 (0.02) 0.02 7.6
J=5/2–3/2, F=3–2 0.47 1.45 (0.05) 0.72 (0.02) 0.02 7.6
J=7/2–5/2, F=3–2 0.51 1.58 (0.06) 0.86 (0.02) 0.02 7.6
J=7/2–5/2, F=4–3 0.65 1.47 (0.04) 1.01 (0.02) 0.02 7.5

NGC1333-10 J=5/2–3/2, F=3–2 0.10 1.25 (0.18) 0.13 (0.02) 0.02 7.6
J=7/2–5/2, F=3–2 0.12 1.09 (0.18) 0.14 (0.02) 0.02 7.5
J=7/2–5/2, F=4–3 0.13 1.49 (0.24) 0.21 (0.02) 0.02 7.3

NGC1333-11 J=5/2–3/2, F=2–1 0.18 0.63 (0.09) 0.12 (0.01) 0.02 8.5
J=5/2–3/2, F=3–2 0.27 0.58 (0.06) 0.17 (0.01) 0.02 8.5
J=7/2–5/2, F=3–2 0.25 0.56 (0.07) 0.15 (0.01) 0.02 8.5
J=7/2–5/2, F=4–3 0.31 0.50 (0.05) 0.17 (0.01) 0.02 8.5

NGC1333-12 J=5/2–3/2, F=2–1 0.12 0.47 (0.14) 0.06 (0.01) 0.02 7.5
J=5/2–3/2, F=3–2 0.14 0.55 (0.11) 0.08 (0.01) 0.02 7.6
J=7/2–5/2, F=3–2 0.16 0.63 (0.09) 0.11 (0.01) 0.02 7.5
J=7/2–5/2, F=4–3 0.17 0.54 (0.07) 0.10 (0.01) 0.02 7.5

NGC1333-13 J=5/2–3/2, F=2–1 0.14 0.53 (0.10) 0.08 (0.01) 0.02 7.5
J=5/2–3/2, F=3–2 0.24 0.48 (0.06) 0.12 (0.01) 0.02 7.5
J=7/2–5/2, F=3–2 0.29 0.48 (0.05) 0.15 (0.01) 0.02 7.5
J=7/2–5/2, F=4–3 0.35 0.60 (0.05) 0.22 (0.01) 0.02 7.5

NGC1333-14 J=5/2–3/2, F=2–1 0.13 1.15 (0.16) 0.16 (0.02) 0.02 7.9
J=5/2–3/2, F=3–2 0.29 0.70 (0.05) 0.21 (0.01) 0.02 7.9
J=7/2–5/2, F=3–2 0.26 0.76 (0.06) 0.21 (0.01) 0.02 7.8
J=7/2–5/2, F=4–3 0.35 0.68 (0.04) 0.25 (0.01) 0.02 7.8

NGC1333-15 J=5/2–3/2, F=3–2 0.10 0.87 (0.17) 0.09 (0.02) 0.02 8.3
J=7/2–5/2, F=3–2 0.10 0.96 (0.14) 0.10 (0.01) 0.02 8.2
J=7/2–5/2, F=4–3 0.12 0.61 (0.10) 0.08 (0.01) 0.02 8.2

NGC1333-16 J=5/2–3/2, F=2–1 0.10 1.36 (0.78) 0.14 (0.03) 0.02 6.6
J=5/2–3/2, F=3–2 0.14 2.34 (0.78) 0.35 (0.03) 0.02 6.2
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Table 6
(Continued)

IDs Transition TMB
a dv ò T dvMB rmsb VLSR

J, F (K) (km s−1) (K km s−1) (K) (km s−1)

J=7/2–5/2, F=3–2 0.14 1.85 (0.78) 0.28 (0.03) 0.02 6.5
J=7/2–5/2, F=4–3 0.20 2.41 (0.78) 0.51 (0.03) 0.02 6.3

NGC1333-17 J=5/2–3/2, F=2–1 0.86 1.01 (0.20) 0.97 (0.05) 0.04 8.7
J=5/2–3/2, F=3–2 1.15 1.13 (0.20) 1.38 (0.05) 0.04 8.7
J=7/2–5/2, F=3–2 1.24 1.07 (0.20) 1.40 (0.05) 0.04 8.7
J=7/2–5/2, F=4–3 1.54 1.12 (0.20) 1.84 (0.05) 0.04 8.7

L1448-1 J=5/2–3/2, F=2–1 0.44 1.44 (0.06) 0.68 (0.02) 0.03 4.0
J=5/2–3/2, F=3–2 0.66 1.48 (0.05) 1.05 (0.03) 0.03 4.0
J=7/2–5/2, F=3–2 0.74 1.38 (0.04) 1.09 (0.03) 0.03 4.0
J=7/2–5/2, F=4–3 0.86 1.56 (0.04) 1.42 (0.03) 0.03 3.9

L1448-2 J=5/2–3/2, F=2–1 1.01 1.70 (0.22) 1.83 (0.07) 0.03 4.8
J=5/2–3/2, F=3–2 1.33 1.72 (0.22) 2.44 (0.07) 0.03 4.8
J=7/2–5/2, F=3–2 1.36 1.80 (0.22) 2.61 (0.07) 0.03 4.8
J=7/2–5/2, F=4–3 1.59 1.85 (0.22) 3.12 (0.07) 0.03 4.7

L1448-3 J=5/2–3/2, F=2–1 0.45 1.03 (0.06) 0.50 (0.02) 0.03 5.1
J=5/2–3/2, F=3–2 0.71 0.96 (0.04) 0.73 (0.02) 0.03 5.2
J=7/2–5/2, F=3–2 0.77 0.98 (0.03) 0.81 (0.02) 0.03 5.2
J=7/2–5/2, F=4–3 0.93 1.09 (0.03) 1.08 (0.02) 0.03 5.1

L1448-4 J=5/2–3/2, F=2–1 1.05 0.89 (0.02) 0.99 (0.02) 0.03 4.0
J=5/2–3/2, F=3–2 1.36 0.91 (0.02) 1.33 (0.02) 0.03 4.1
J=7/2–5/2, F=3–2 1.45 0.96 (0.02) 1.47 (0.02) 0.03 4.0
J=7/2–5/2, F=4–3 1.58 0.98 (0.01) 1.65 (0.01) 0.03 4.0

L1448-5 J=5/2–3/2, F=2–1 0.22 0.57 (0.12) 0.13 (0.03) 0.05 4.1
J=5/2–3/2, F=3–2 0.35 0.61 (0.08) 0.23 (0.03) 0.05 4.1
J=7/2–5/2, F=3–2 0.38 0.50 (0.08) 0.20 (0.03) 0.05 4.2
J=7/2–5/2, F=4–3 0.40 0.87 (0.08) 0.37 (0.03) 0.05 4.2

IC348-1 J=5/2–3/2, F=2–1 0.60 0.78 (0.04) 0.49 (0.02) 0.03 9.1
J=5/2–3/2, F=3–2 0.75 0.82 (0.03) 0.65 (0.02) 0.03 9.1
J=7/2–5/2, F=3–2 0.81 0.80 (0.03) 0.69 (0.02) 0.03 9.1
J=7/2–5/2, F=4–3 1.03 0.83 (0.02) 0.91 (0.02) 0.03 9.0

IC348-2 J=5/2–3/2, F=2–1 0.61 1.00 (0.03) 0.66 (0.02) 0.02 8.6
J=5/2–3/2, F=3–2 0.85 1.03 (0.02) 0.93 (0.02) 0.02 8.7
J=7/2–5/2, F=3–2 0.89 1.03 (0.02) 0.97 (0.02) 0.02 8.6
J=7/2–5/2, F=4–3 1.08 1.03 (0.02) 1.19 (0.02) 0.02 8.6

IC348-3 J=5/2–3/2, F=2–1 0.16 0.97 (0.11) 0.16 (0.02) 0.02 10
J=5/2–3/2, F=3–2 0.23 1.45 (0.12) 0.24 (0.02) 0.02 10
J=7/2–5/2, F=3–2 0.26 1.01 (0.06) 0.28 (0.02) 0.02 10
J=7/2–5/2, F=4–3 0.32 1.19 (0.07) 0.41 (0.02) 0.02 10

IC348-4 J=5/2–3/2, F=2–1 0.45 0.82 (0.04) 0.39 (0.02) 0.02 8.5
J=5/2–3/2, F=3–2 0.70 0.82 (0.02) 0.61 (0.02) 0.02 8.5
J=7/2–5/2, F=3–2 0.70 0.83 (0.03) 0.60 (0.02) 0.02 8.5
J=7/2–5/2, F=4–3 0.95 0.84 (0.02) 0.85 (0.02) 0.02 8.5

Barnard5 J=5/2–3/2, F=2–1 0.81 0.77 (0.02) 0.66 (0.02) 0.03 10
J=5/2–3/2, F=3–2 1.13 0.77 (0.02) 0.93 (0.02) 0.03 10
J=7/2–5/2, F=3–2 1.12 0.82 (0.02) 0.98 (0.02) 0.03 10
J=7/2–5/2, F=4–3 1.38 0.85 (0.02) 1.24 (0.02) 0.03 10

B1-1 J=5/2–3/2, F=2–1 0.27 1.06 (0.09) 0.30 (0.02) 0.03 6.4
J=5/2–3/2, F=3–2 0.41 0.92 (0.07) 0.40 (0.02) 0.03 6.3
J=7/2–5/2, F=3–2 0.43 1.01 (0.07) 0.46 (0.02) 0.03 6.4
J=7/2–5/2, F=4–3 0.54 1.04 (0.06) 0.60 (0.02) 0.03 6.3

B1-2 J=5/2–3/2, F=2–1 0.74 0.62 (0.02) 0.49 (0.01) 0.03 6.6
J=5/2–3/2, F=3–2 0.92 0.67 (0.02) 0.65 (0.02) 0.03 6.6
J=7/2–5/2, F=3–2 0.97 0.61 (0.02) 0.63 (0.01) 0.03 6.6
J=7/2–5/2, F=4–3 1.07 0.66 (0.02) 0.76 (0.02) 0.03 6.6

B1-3 J=5/2–3/2, F=2–1 0.27 1.20 (0.10) 0.34 (0.02) 0.03 6.4
J=5/2–3/2, F=3–2 0.39 1.08 (0.06) 0.45 (0.02) 0.03 6.3
J=7/2–5/2, F=3–2 0.39 1.59 (0.11) 0.65 (0.03) 0.03 6.4
J=7/2–5/2, F=4–3 0.57 0.93 (0.04) 0.57 (0.02) 0.03 6.3

B1-4 J=5/2–3/2, F=2–1 0.50 0.98 (0.22) 0.52 (0.03) 0.03 6.9
J=5/2–3/2, F=3–2 0.71 1.04 (0.22) 0.78 (0.03) 0.03 6.9
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component of C2H in Table 2 in order to avoid the possible
saturation effect as much as possible. Since broad wing
components of the CH3OH lines would likely originate from
outflow shocks, we need to exclude them to discuss the
chemical compositions of protostellar envelopes. For this
purpose, the C2H velocity width (a full width at half maximum,
FWHM) is employed as the velocity range for the integrated
intensities of the CH3OH lines. We use this simple procedure
because fitting by a double (or multiple) Gaussian function
does not always work, due to asymmetric line profiles. The
result is shown in Figure 5(a). The intensities vary over one or
two orders of magnitude among the sources, and no correlation
can be seen between the C2H and CH3OH intensities. Indeed,
the correlation coefficient is 0.04 for Figure 5(a), where the
upper limits are not involved in the calculation of the
correlation coefficient. The C2H/CH3OH integrated intensity
ratio differs at most by a factor of 100. Even if we focus on
only the sources in the NGC1333 cloud, the correlation plot
still shows a large scatter (Figure 5(a)).

For reference, we prepare the same plot sing the integrated
intensities of CH3OH including the wing components, as
shown in Figure 5(b). The plots with and without the wing
component of CH3OH do not differ from each other as a whole.
In general, CH3OH is not only abundant in hot inner envelopes
but also in outflow-shocked regions (Bachiller et al. 1998).
CH3OH is formed through hydrogenation of CO depleted on a
grain mantle in a cold starless phase (e.g., Tielens & Hagen
1982; Watanabe & Kouchi 2002; Soma et al. 2015), and is
liberated into the gas-phase in hot regions (T>100 K) or in
outflow-shocked regions (e.g., Bachiller & Pérez Gutiérrez
1997; Saruwatari et al. 2011). Furthermore, it can also be
liberated even in cold regions to some extent, through

non-thermal desorption processes (e.g., Bizzocchi et al. 2014;
Soma et al. 2015; Spezzano et al. 2016a, 2016b). For this
reason, abundant CH3OH in the gas-phase means abundant
CH3OH in grain a mantle just before the onset of star
formation, whatever its liberation mechanism is. Conversely,
CH3OH cannot be abundant in the gas-phase, if it is deficient
on a grain mantle. Indeed, the CH3OH emission is faint in the
WCCC source, L1527, even for the outflow components (e.g.,
Sakai et al. 2014a; Takakuwa et al. 2000). Hence, the inclusion
of the wing components originating from the outflow-shocked
regions in the integrated intensity of CH3OH will not seriously
affect the trend that CH3OH is abundant in the source.
However, we use the integrated intensity without the wing
components in the following discussion for fair comparison, as
stated above.
In addition, the correlation plot of integrated intensities of

the CH3OH and c-C3H2 (32,1–21,2, Eu=18 K) lines is shown
(see Figure 5(c)). No correlation can be found in this plot,
similar to the correlation plot between the integrated intensities
of C2H and CH3OH. The correlation coefficient is 0.04.
In contrast, the integrated intensities of the C2H (N=3–2,

J=5/2–3/2, F=3–2, Eu=25 K) and c-C3H2 (32,1–21,2,
Eu=18 K) lines are correlated with each other (see
Figure 5(d)). The correlation coefficient is 0.75, where the
upper limit values are not included. Although C2H is thought to
be the photodissociation region (PDR) tracer (e.g., Cuadrado
et al. 2015), the clear correlation between C2H and c-C3H2

implies that the C2H lines trace the dense core rather than the
PDRs in this study (See Section 4.1).
The correlation of C2H and c-C3H2 has been reported for

diffuse clouds and PDRs (e.g., Gerin et al. 2011; Guzmán
et al. 2015). In addition, C2H and c-C3H2 exist in dense clouds,

Table 6
(Continued)

IDs Transition TMB
a dv ò T dvMB rmsb VLSR

J, F (K) (km s−1) (K km s−1) (K) (km s−1)

J=7/2–5/2, F=3–2 0.77 1.03 (0.22) 0.85 (0.03) 0.03 6.9
J=7/2–5/2, F=4–3 0.92 1.05 (0.22) 1.02 (0.03) 0.03 6.8

B1-5 J=5/2–3/2, F=2–1 0.29 0.82 (0.07) 0.25 (0.02) 0.03 7.0
J=5/2–3/2, F=3–2 0.40 0.76 (0.04) 0.32 (0.02) 0.03 7.0
J=7/2–5/2, F=3–2 0.41 0.96 (0.06) 0.41 (0.02) 0.03 7.0
J=7/2–5/2, F=4–3 0.50 0.90 (0.05) 0.48 (0.02) 0.03 7.0

L1455-1 J=5/2–3/2, F=2–1 0.43 0.72 (0.22) 0.33 (0.02) 0.02 5.2
J=5/2–3/2, F=3–2 0.59 0.81 (0.22) 0.50 (0.02) 0.02 5.2
J=7/2–5/2, F=3–2 0.63 0.81 (0.22) 0.54 (0.02) 0.02 5.2
J=7/2–5/2, F=4–3 0.69 0.87 (0.22) 0.63 (0.02) 0.02 5.2

L1455-2 J=5/2–3/2, F=2–1 0.52 1.09 (0.04) 0.61 (0.02) 0.03 4.9
J=5/2–3/2, F=3–2 0.69 1.15 (0.03) 0.84 (0.02) 0.03 4.9
J=7/2–5/2, F=3–2 0.80 1.12 (0.03) 0.96 (0.02) 0.03 4.9
J=7/2–5/2, F=4–3 0.96 1.20 (0.03) 1.23 (0.02) 0.03 4.9

L1455-3 J=5/2–3/2, F=2–1 0.43 0.79 (0.04) 0.36 (0.02) 0.03 4.8
J=5/2–3/2, F=3–2 0.66 0.75 (0.03) 0.52 (0.02) 0.03 4.8
J=7/2–5/2, F=3–2 0.67 0.73 (0.03) 0.52 (0.02) 0.03 4.8
J=7/2–5/2, F=4–3 0.88 0.75 (0.02) 0.71 (0.02) 0.03 4.7

L1455-4 J=5/2–3/2, F=2–1 0.23 1.01 (0.08) 0.25 (0.02) 0.03 5.3
J=5/2–3/2, F=3–2 0.32 1.00 (0.06) 0.33 (0.02) 0.03 5.3
J=7/2–5/2, F=3–2 0.35 1.09 (0.06) 0.40 (0.02) 0.03 5.3
J=7/2–5/2, F=4–3 0.44 1.08 (0.05) 0.50 (0.02) 0.03 5.2

Notes.
a Obtained by the Gaussian fit.
b The rms noise averaged over the line width.
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including starless cores and protostellar cores (e.g., Sakai et al.
2008, 2014a; Koumpia et al. 2016, 2017). Since we observed
the high excitation lines of C2H and c-C3H2 toward the
protostellar cores at almost the same distance, our result
suggests that the correlation between the two lines holds in
protostellar cores, as expected from carbon chemistry in dense
clouds (Sakai & Yamamoto 2013; Yamamoto 2017). In
contrast, Fontani et al. (2012) presented anti-correlation
between the two molecules, C2H and c-C3H2 in a UCH II
region, suggesting a complex physical structure for the source.

3.3. Derivation of Rotation Temperatures and Column
Densities

To investigate the chemical diversity, we derive the beam-
averaged column densities of CH3OH, C2H, and c-C3H2 under
the assumption of local thermodynamic equilibrium (LTE)
conditions. The rotation temperature of CH3OH (E state) was
evaluated from the multiple transition lines with different upper

state energies, where a rotational diagram method assuming
optically thin emission was used (e.g., Watanabe et al. 2015).
We used the E state lines, because more lines are available than
for the A state. Examples of the rotation diagrams prepared in
our analyses are shown in Figure 6 (also see Figure 11).
The derived rotation temperature ranges from 8 to 21K. The

rotation temperatures of CH3OH, derived for NGC1333-1
(IRAS 4B), NGC1333-2 (IRAS 2), L1448-2, and L1448-3
using the K structure lines of the J=5–4 and J=7–6
transition, are lower by 6–82K than those reported by Maret
et al. (2005). Maret et al. (2005) only employed the high
excitation lines (J=5–4 and J=7–6) of CH3OH in their
analysis. In contrast, we employ the J=2–1 lines instead of
higher excitation lines, which would likely trace CH3OH not
only in a warm and dense part, but also in a colder envelope
part. This seems to be a reason for the lower temperature
obtained in our study.
It should be noted that we are observing the CH3OH emission

in the protostellar envelope. One may think that the CH3OH
emission mainly comes from the small hot region (∼100K) near
the protostar. However, its contribution may not be dominant in
our observations, because the rotation temperature is as low as
8–21K. Rotation temperatures of 8–21K are too low to trace hot
corinos, even considering that CH3OH emission is sub-
thematically excited (e.g., Bachiller et al. 1998 and references
therein). Moreover, we do not find any correlation between the
CH3OH intensity and the protostellar luminosity (Figure 7);
higher-luminosity sources do not always give stronger CH3OH
emission in our observation.
The rotation temperature derived by the rotation diagram

analysis depends on the assumed source size. If the source size is
smaller than the observation beams both for the J=2–1 (97GHz)
and J=5–4 (242GHz) lines, the rotation temperature derived
above would be lower than our estimate, because the beam dilution
effect is larger for the 97GHz observation. If the emitting region is
smaller for the 242GHz line than for the 97GHz line due to the
higher critical density, the beam dilution effect can be larger for
the 242GHz line. In this case, the rotation temperature would be
higher than our estimate. Although these two situations may be the
case, we do not know the internal structure within the observation
beam for individual sources. When the two above limitations are
considered, assuming that the beam filling factor is unity provides
a moderate estimate of the rotation temperature. Moreover, in the
following sections we discuss the results within our sample
sources, which are almost equally distant from the Sun. Thus,
the systematic errors due to the beam dilution effect would be
mitigated to some extent for the column density ratios, which are
mainly used in our discussions.
By assuming that the abundance of the A state is the same

as that of the E state, the total beam-averaged column density
of CH3OH for each source is determined from the integrated
intensities within the velocity range of the C2H line averaged
for the four hyperfine components in order to eliminate the
outflow component as much as possible. Since the actual
source size is unknown for most of the sources, the beam
filling factor of unity is used for simplicity, as discussed
above. Thus, the beam-averaged column density is derived in
this study. Here, the uncertainties of the derived column
densities are evaluated from the rms noise. For C2H and
c-C3H2, we used the N=3–2, J=5/2–3/2, F=3–2 line
and the 32,1–21,2 line to derive the beam-averaged column
density, respectively, where we assume the rotation

Table 7
Line Parameters of the c-C3H2 (32,1–21,2) Lines Observed with IRAM 30m

IDs TMB
a dv ò T dvMB rmsb VLSR

(K) (km s−1) (K km s−1) (K) (km s−1)

NGC1333-1 0.23 0.35 (0.08) 0.08 (0.02) 0.04 6.5
NGC1333-2 0.25 1.03 (0.10) 0.27 (0.02) 0.03 7.5
NGC1333-3 0.18 0.64 (0.08) 0.12 (0.02) 0.03 8.1
NGC1333-4 0.09 0.72 (0.26) 0.07 (0.02) 0.03 8.6
NGC1333-5 0.17 0.69 (0.12) 0.13 (0.02) 0.03 7.7
NGC1333-6 0.66 0.67 (0.03) 0.47 (0.02) 0.03 7.3
NGC1333-7 0.21 0.60 (0.08) 0.14 (0.02) 0.03 8.1
NGC1333-8 0.11 0.90 (0.21) 0.11 (0.02) 0.03 6.6
NGC1333-9 L L <0.04 0.03 L
NGC1333-10 L L <0.04 0.02 L
NGC1333-11 0.11 0.41 (0.11) 0.05 (0.01) 0.02 8.4
NGC1333-12 L L <0.03 0.02 L
NGC1333-13 L L <0.03 0.02 L
NGC1333-14 0.12 0.60 (0.11) 0.07 (0.01) 0.02 7.7
NGC1333-15 L L <0.03 0.02 L
NGC1333-16 0.12 0.72 (0.08) 0.10 (0.01) 0.08 6.8
NGC1333-17 0.15 1.12 (0.04) 0.18 (0.01) 0.04 8.4
L1448-1 0.50 1.22 (0.06) 0.66 (0.03) 0.04 4.2
L1448-2 0.39 1.34 (0.07) 0.55 (0.03) 0.03 4.6
L1448-3 0.25 0.97 (0.10) 0.26 (0.02) 0.03 4.8
L1448-4 0.39 0.52 (0.04) 0.22 (0.02) 0.03 4.0
L1448-5 0.33 0.46 (0.05) 0.16 (0.02) 0.03 4.1
IC348-1 0.37 0.61 (0.05) 0.24 (0.02) 0.03 9.0
IC348-2 0.47 0.56 (0.03) 0.28 (0.01) 0.02 8.8
IC348-3 L L <0.04 0.02 L
IC348-4 0.28 0.52 (0.04) 0.15 (0.01) 0.02 8.5
Barnard5 0.22 0.89 (0.10) 0.21 (0.02) 0.02 10
B1-1 0.31 0.89 (0.05) 0.29 (0.02) 0.02 6.3
B1-2 0.36 0.65 (0.05) 0.25 (0.02) 0.02 6.5
B1-3 0.13 0.99 (0.15) 0.13 (0.02) 0.03 6.3
B1-4 0.36 0.75 (0.06) 0.28 (0.02) 0.03 6.9
B1-5 0.20 0.53 (0.06) 0.11 (0.02) 0.03 6.9
L1455-1 0.28 0.53 (0.04) 0.16 (0.01) 0.02 5.2
L1455-2 0.19 1.01 (0.13) 0.20 (0.02) 0.02 5.0
L1455-3 0.19 0.51 (0.07) 0.10 (0.01) 0.03 4.8
L1455-4 0.10 0.35 (0.17) 0.03 (0.01) 0.02 5.1

Notes. The errors are 1σ. The upper limit to the integrated intensity is

calculated as ò s< ´ ( )T dv dv dv3MB res dvres, where dv is the assumed line

width (0.8 km s−1) and dvres is the velocity resolution per channel.
a Obtained by the Gaussian fit.
b The rms noise averaged over the line width.
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Figure 2. Line profiles of CH3OH (J=5–4) observed with IRAM 30m. The spectra taken with the wobbler switching are indicated with an asterisk (ASAI project).
(An extended version of this figure is available.)
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Figure 3. Line profiles of C2H (N=3–2) observed with IRAM 30m. The spectra taken with the wobbler switching are indicated with an asterisk (ASAI project).
(An extended version of this figure is available.)
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Figure 4. Line profiles of c-C3H2 (32,1–21,2) observed with IRAM 30m. The spectra taken with the wobbler switching are indicated with an asterisk (ASAI project).
(An extended version of this figure is available.)
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temperature of CH3OH derived for each source. Note that for
NGC1333-16 and NGC1333-17, the rotation temperatures
of CH3OH for the nearby sources, NGC1333-1 and
NGC1333-2, are employed, respectively, because of the lack
of the Nobeyama data. Table 3 summarizes the derived beam-
averaged column densities.

NGC1333-1 (IRAS 4B), NGC1333-16 (IRAS 4A),
NGC1333-7, and B1-3 show high CH3OH column densities.
On the other hand, L1448-2 shows higher column densities of
C2H and c-C3H2, which are about an order of magnitude higher
than those in NGC1333-1, and about a half an order of
magnitude higher than those in L1527 (Sakai et al. 2008).

4. Discussion

4.1. Chemical Variation between C2H and CH3OH

In this section, we use the beam-averaged column densities
summarized in Table 3 to characterize the chemical composition of

protostellar sources at a few 1000au scale. Smaller-scale chemical
variation is averaged out, and hence a spatial attention is needed
when they are compared with the column densities in other studies
at a higher angular resolution or with source-size corrections.
Nevertheless, the beam-averaged column densities can be used for
mutual comparison among our samples in the Perseus molecular
cloud complex, because the sources are at similar distances and the
column densities are derived in a uniform way.
Figure 8(a) shows the correlation plot of the beam-averaged

column densities between C2H and CH3OH, while Figure 8(b)
depicts those between C2H and c-C3H2. The column densities
of C2H and c-C3H2 correlate with each other, because these two
molecules would be produced in related pathways (Sakai &
Yamamoto 2013). In contrast, no correlation can be seen
between C2H and CH3OH in the column densities, similar to
the integrated intensities (Figures 5(a) and (b)). Similarly, no
correlation is found between c-C3H2 and CH3OH, either, as
shown in Figure 5(c).

Figure 5. (a) Correlation plot between the integrated intensities of the C2H (N=3–2, J=5/2–3/2, F=3–2) and CH3OH (J=5–4, K=1, E−) lines, excluding
wing components for the latter (correlation coefficient=0.04). The dashed lines indicate the intensity ratios of 100, 10, 1, 0.1, and 0.01. (b) Correlation plot between
the integrated intensities of the C2H (N=3–2, J=5/2–3/2, F=3–2) and CH3OH (J=5–4, K=1, E−) lines, including the wing components for the latter
(correlation coefficient=0.04). The dashed lines indicate the intensity ratios of 100, 10, 1, 0.1, and 0.01. (c) Correlation plot between the integrated intensities of the
c-C3H2 (32,1–21,2) and CH3OH (J=5–4, K=1, E−) lines (correlation coefficient=0.17). The dashed lines indicate the intensity ratios of 100, 10, 1, 0.1, and 0.01.
(d) Correlation plot between the integrated intensities of the C2H (N=3–2, J=5/2–3/2, F=3–2) and c-C3H2 (32,1–21,2) lines (correlation coefficient=0.75). The
dashed lines indicate the intensity ratios of 100, 10, 1, 0.1, and 0.01. Data points with an arrow in CH3OH and c-C3H2 intensities show the upper limits. The

correlation coefficient is defined as S - -( ¯)( ¯)x x y yi i S - S -( ¯) ( ¯)x x y yi i
2 2 , where x̄ and ȳ represent the average values of the data xi and yi, respectively.
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These results clearly indicate the chemical diversity at a few
1000au scale around the protostar. The C2H/CH3OH ratios
range over almost two orders of magnitude even among the
Class 0/I sources within the same molecular cloud complex. A
similar diversity for the C4H/CH3OH ratio among various
protostellar sources was also reported by Graninger et al.
(2016) and Lindberg et al. (2016). However, our result is the
first one based on unbiased samples in the single molecular
cloud complex.

It is likely that the above chemical diversity at a few
1000au scale is related to the chemical diversity identified at
a smaller scale; namely, hot corino chemistry and WCCC. As
discussed by Sakai et al. (2009) and Sakai & Yamamoto
(2013), definitive identification of hot corino chemistry and
WCCC requires the confirmation of the central concentration

of COMs and carbon-chain molecules, respectively. Such a
concentration is not confirmed for C2H, c-C3H2, and CH3OH
in our single-point observations. Nevertheless, it is likely that
the beam-averaged chemical composition does reflect the
chemical composition of the protostellar core to some extent,
because the high excitation lines of CH3OH, C2H, and
c-C3H2 are employed in this study to trace dense regions
rather than the component extended over parent molecular
clouds.
For NGC1333-1 (IRAS 4B) and NGC1333-16 (IRAS 4A),

which have previously been identified as hot corino sources,
we indeed see abundant CH3OH but deficient C2H, their
C2H/CH3OH column density ratios being almost the lowest
among the observed sources (Table 3). On the other hand, the
WCCC source L1527 in Taurus, which is employed as a

Figure 6. Rotation diagrams of CH3OH for NGC1333-1, NGC1333-6, B1-3, B1-5, and L1448-3.
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reference, shows abundant C2H and deficient CH3OH with the
single-dish observation in the ASAI project (Lefloch et al.
2018), as shown in Figure 9(a). Importantly, most of the
sources show the ratios between those of the hot corino sources
and the WCCC source. Thus, the hot corino sources and the
WCCC source are certainly two extreme cases of chemical
variation.

Sakai et al. (2009) and Sakai & Yamamoto (2013)
suggested that the difference in the chemical compositions
found between WCCC sources and hot corino sources could
originate from the different duration times of the starless
phase after shielding the interstellar UV radiation in the
parent molecular cloud. For efficient formation of various
COMs, a significant amount of CH3OH is necessary as a
parent molecule (e.g., Garrod & Herbst 2006). CH3OH is
mainly formed by hydrogenation of CO on a grain mantle
(e.g., Tielens & Hagen 1982; Watanabe & Kouchi 2002;
Soma et al. 2015). On the other hand, it takes about
105–6 years for the formation of CH3OH from CO, if the H2

density of the parent cloud is as high as 105cm−3 (Taquet
et al. 2012). When the core-collapse starts well after the
shielding of the interstellar UV radiation in the parent cloud,
most of the carbon atoms are fixed into CO by gas-phase
reactions, and CO is depleted onto dust grains in dense and
cold regions to form CH3OH.

On the other hand, there is not enough time for the C to CO
conversion in the gas-phase, if the core-collapse starts just after
the UV-shielding. Carbon atoms can still be abundant in such
cores. The timescale for the depletion of atoms and molecules
onto dust grains is roughly 105/(n/104 cm−3)yr (e.g., Burke &
Hollenbach 1983), which is comparable to the dynamical
timescale. Hence, carbon atom is depleted onto dust grains
before it is converted to CO by gas-phase reactions.
Hydrogenation of C on grain surfaces forms CH4 efficiently.
After the onset of star formation, CH4 is evaporated into
the gas-phase in a warm region (T>25 K) to form various
carbon-chain molecules through gas-phase reactions (i.e., the
WCCC mechanism). In this case, the core-collapse occurs in
chemically young clouds, hence carbon-chain molecules

produced in the early evolutionary stage of cold starless cores
could also survive in the gas-phase to some extent.
In L1527, a cold envelope with abundant carbon-chain

molecules surrounds the dense (n∼106 cm−3) and warm
(T>25 K) core where the enhancement of carbon-chain
molecules due to WCCC is occurring (Sakai et al. 2010). In
contrast, carbon-chain molecules are relatively deficient in hot
corino sources even in the surrounding component (e.g., Sakai
& Yamamoto 2013). Therefore, the ratios between carbon-
chain molecules, especially CnH and CnH2, and CH3OH, are
expected to represent the chemical characteristics of proto-
stellar cores, even if a part of the observed emission comes
from outflows or cold dense envelopes in addition to that from
the inner part of protostellar cores.
It should be noted that C2H is known to be abundant in

PDRs (e.g., Pety et al. 2007; Cuadrado et al. 2015). In such
regions, C2H is efficiently produced from C+ in the gas-phase
reaction and/or is formed by destruction of very small grains
and polycyclic aromatic hydrocarbons (e.g., Cuadrado et al.
2015). However, we observed the regions with high extinction
(Av>5–7 mag; Kirk et al. 2006) in relatively high critical
density lines. Hence, the detected C2H emissions would
mainly originate from protostellar cores rather than to the
surrounding diffuse parts to which the UV radiation can
penetrate. Nevertheless, C2H would also exist in the cavity
walls of low-velocity outflows, where C2H could be formed
by the UV radiation from the central protostar (e.g., Oya
et al. 2014). To assess this effect, we also observed the c-C3H2

lines. As demonstrated in Figure 8(b), the column densities of
C2H and c-C3H2 show a good correlation. The C2H/c-C3H2

ratio is about 10, which is lower than those found in PDRs and
diffuse clouds and is rather close to those of dense cores
(Gerin et al. 2011; Cuadrado et al. 2015). In fact, Lindberg
et al. (2015) also reported that c-C3H2 is not affected by the
UV radiation in the R CrA region. Although c-C3H2 is
detected in the outflow-shocked region L1157 B1 (Yamagu-
chi et al. 2012), its abundance is not as high as that in the
protostellar core of L1157 mm (Bachiller & Pérez Gutiér-
rez 1997). Above all, the diversity seen in the C2H/CH3OH
column density ratio most likely reflects the chemical
diversity of protostellar cores.

4.2. Effects from the Evolutionary Stage of the Source

Figures 9(a)–(c) show the correlation plots of the
C2H/CH3OH ratio against the envelope mass Menv, the ratio
of the bolometric luminosity to the submillimeter wavelength
luminosity Lbol/Lsmm, and the bolometric temperature Tbol,
respectively. The envelope mass (Menv) represents the amount
of the gas associated with the protostar, whereas Lbol/Lsmm and
Tbol are known as evolutionary indicators of the protostellar
source (Hatchell et al. 2005, 2007).
In Figure 9(a), the Menv values are taken from Hatchell et al.

(2007). These values are derived from the 850μm dust
continuum flux observed with JCMT, which has a beam size
similar to that of our IRAM30m observations in the 1.3mm
band (∼15″). The correlation coefficient is 0.02, indicating no
correlation. Hence, the result indicates that there is no clear
relationship between the chemical composition and the mass to
be accreted.
Likewise, Lbol/Lsmm and Tbol also do not show a correlation

with the C2H/CH3OH ratio (Figures 9(b) and (c)), where
Lbol/Lsmm and Tbol are also taken from Hatchell et al. (2007).

Figure 7. Correlation plot between the integrated intensities of CH3OH
(J=5–4, K=1, E−) lines, excluding wing components and the protostellar
luminosity (correlation coefficient=0.19). The data point with an arrowed line
in the CH3OH intensity shows the upper limit. The correlation coefficient is
defined in the caption in Figure 5.
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The correlation coefficients for the Lbol/Lsmm and Tbol plots are
as small as 0.26 and 0.31, respectively. Thus, the evolutionary
stage does not show correlation with the C2H/CH3OH ratio.
This is because the chemical composition of the grain mantles,
which characterizes the gas-phase chemical composition after
the onset of star formation, has already been determined by the
processes during the starless core phase.

4.3. Positional Effects in the Parent Cloud

To test the relation between the positions of protostars and
the C2H/CH3OH ratios, we introduce the minimum projected
distance from the molecular cloud edge, Dmin, i.e., small
Dmin indicates a source closer to the edge of the cloud.
Dmin is calculated using the Planck 217GHz continuum
map (see Figure 10), where the cloud edge is arbitrarily defined
as the 10σ contour. Note that the 10σ contour of the
Planck continuum map, which we employ as the edge of the
cloud, corresponds to an Av of 1mag (Kirk et al. 2006).
Figure 9(d) shows the correlation plot of the C2H/CH3OH
ratio against Dmin. Note that a typical size of the cloud is 1pc

(e.g., Hacar et al. 2017), hence there is a sharp limit of Dmin

around 0.6–0.7pc.
Dmin is a projected distance, and the line-of-sight depth from

the cloud surface is unknown. Hence, sources that appear near
the center of the cloud are not always embedded deeply in the
clouds, but some of them may be close to the cloud periphery
along the line of sight. Although Dmin is affected by this
projection effect, we can obtain clues regarding the origin of
the chemical diversity from Figure 9(d). These results suggest
that the sources with lower ratios tend to appear only at larger
Dmin. Namely, they are likely more embedded in the central
part of the large molecular clouds.
Figure 9(d) shows a kind of “right angle” distribution of the

points: sources with small Dmin have only high C2H/CH3OH
ratios. On the other hand, sources with large Dmin have both
high and low C2H/CH3OH ratios, indicating a large scatter of
the ratios. Although this scatter mainly comes from the
NGC1333 region, a similar trend can be seen in the plots
without the NGC1333 sources. It should be stressed that there
is a blank area in the bottom left corner, where Dmin is small
and the ratio is low.

Figure 8. (a) Correlation plot between the column densities of C2H and CH3OH (correlation coefficient=0.01). The dashed lines indicate intensity ratios of 100, 10,
1, and 0.1. (b) Correlation plot between the column densities of C2H and c-C3H2 (correlation coefficient=0.88). The dashed lines indicate intensity ratios of 100, 10,
1, and 0.1. (c) Correlation plot between the column densities of c-C3H2 and CH3OH (correlation coefficient=0.1). The dashed lines indicate intensity ratios of
100, 10, 1, and 0.1. Data points with an arrow in CH3OH and c-C3H2 column densities show the upper limits. The correlation coefficient is defined in the caption in
Figure 5.
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Figure 9. Correlation plot between the C2H/CH3OH ratio vs. (a) envelope mass Menv(correlation coefficient=0.02), (b) Lbol/Lsmm (correlation coefficient=0.26),
(c) Tbol (correlation coefficient=0.31), (d) Dmin, the minimum distance from the source position and cloud edge (correlation coefficient=0.27), and (e) the peak
intensity of the source position from the Planck map (correlation coefficient=0.42). A dashed line of 0.1pc shows the spatial resolution of the observations, and the
line of 1pc shows the largest cloud size for (d). Data points with an arrow show the lower limits. The correlation coefficient is defined in the caption in Figure 5. The
correlation coefficient is derived excluding the lower limit data. If we include the data point, the correlation coefficient changes to 0.12 for (a), 0.13 for (b), 0.28 for (c),
0.45 for (d), and 0.58 for (e), respectively.
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One may think that this is caused by the source selection effect.
In our source sample, the very-low-luminosity (Lbol<1 Le)
sources are missing. If these sources had a low C2H/CH3OH
ratio, the blank area might be filled up. However, this would not
be the case, because there is no correlation between the luminosity
and the C2H/CH3OH ratio.

Most of the chemical diversity in our sample is thus
concentrated in the large Dmin region. Since all the sources near
the cloud edge (small Dmin sources) have high ratios, the
sources with high ratios at large Dmin may have a small line-of-
sight depth from the cloud surface. Alternatively, substructure
(clumpy and/or filamentary structure) in the molecular clouds
(e.g., velocity-coherent structures found in NGC 1333 by Hacar
et al. 2017) might also contribute to the high ratios because
such substructures allow the interstellar UV radiation to
penetrate into the cloud (e.g., Stutzki et al. 1988; Meixner &
Tielens 1993).

In order to investigate the relation between the C2H/CH3OH
ratio and the line-of sight depth of the cloud, we prepare the
correlation of the ratio against the peak intensity of the Planck
continuum map at the source positions, as shown in
Figure 9(e). The distribution of the points reveals a trend
similar to that found in Figure 9(d). Again, there is a blank area
in the bottom left corner, where the peak intensity is low and
the ratio is low. The scatter in the high peak intensity region
can be interpreted in the same way as that in the large Dmin

case.

In Figure 10, the C2H/CH3OH ratio is represented by a
radius of the circle, which is overlaid on the JCMT850μm
images of the Perseus clouds (Chen et al. 2016). Indeed, the
high C2H/CH3OH ratio sources, i.e., the WCCC-type sources
(larger circles), seem to be isolated or located at the edge of the
cloud, although NGC1333-17 (SVS 13A) is an exception. In
contrast, the low C2H/CH3OH ratio sources, i.e., sources
whose chemical character is close to the hot corino sources,
tend to be concentrated in the inner regions of the cluster-
forming clouds (NGC 1333 and IC 348). This result implies
that the isolated sources and the sources in cloud peripheries
tend to have the WCCC character in the Perseus molecular
cloud complex.
In the central part of the cloud, the time after the UV-

shielding would be longer than that in the cloud peripheries,
because the surrounding gas gradually contracting to the
main body of the cloud can shield the UV radiation. In the
cloud center, the carbon atoms have been converted to
CO, and CO depletion has already occurred in dense cores.
In this case, CH3OH can be abundant on dust grains, which
is reflected in the gas-phase abundance through the thermal
and/or non-thermal desorption processes. On the other hand,
carbon atoms can be abundant in the cloud peripheries.
They can be depleted directly onto dust grains to form CH4,
which leads to WCCC. This picture is consistent with the
result in which higher C2H/CH3OH and c-C3H2/CH3OH
ratios are seen in protostellar cores at the cloud peripheries,

Figure 10. Planck 217GHz map (central part; contours are 5σ, 10σ, 15σ, 20σ, 25σ, 30σ, 35σ, and 40σ levels, 1σ=0.5 mK) and SCUBA 850 μm maps of the
NGC1333, L1448, IC348, B5, B1, and L1455 regions. The grayscale is a 850 μm continuum. The flux is shown on a log scale from 0.5Jybeam−1 to
1.5Jybeam−1. Contours are 5σ, 10σ, 20σ, 40σ, 60σ, 80σ, 100σ, 200σ, and 400σ levels (1σ=0.01 Jy beam−1). The radius of each circle overlaid on the
JCMT850μm images of the Perseus clouds (Chen et al. 2016) is proportional to the C2H/CH3OH ratio. The colors show the systemic velocity of the individual
position.
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Figure 11. Rotation diagrams of CH3OH (E state). Detected lines are marked by points with error bars. A solid line indicates a single temperature fit. (An extended
version of this figure is available.)
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whereas low values only appear in the cores at the cloud
center.

However, it is not clear at present whether the regeneration
mechanism of carbon-chain molecules expected for WCCC is
actually occurring in the sources with the high C2H/CH3OH
and c-C3H2/CH3OH ratios. To assess this point, the central
concentration of carbon-chain molecules should be confirmed
for each source by high-resolution observations. Moreover, it
has recently been revealed that the situation may be more
complicated at a smaller scale (<100 au). For instance, the
isolated Bok globule B335 shows WCCC in the outer
envelope (∼1000 au), while it harbors a hot corino in the
central 10au region (Imai et al. 2016). A similar structure can
also be seen in L483 (Oya et al. 2017). Therefore, it is not
obvious whether the high ratios observed at a 1000 au scale
are brought onto a smaller scale (<100 au), as they are. On the
other hand, the WCCC sources L1527 and TMC-1A indeed
show faint emission of CH3OH even at a 100au scale.
Although the chemical composition at a 1000 au scale likely
affects that at a smaller scale to some extent, high-resolution
observations are essential to confirm the situation for each
source.

5. Conclusions

We present the results of an unbiased survey of the chemical
composition toward the 36 Class 0 and Class I protostars in the
Perseus molecular cloud complex. The results are summarized
as follows:

1. Multiple transition lines of C2H, c-C3H2, and CH3OH were
detected toward most of the target sources. The CH3OH
(J=5–4) lines were detected toward 35 sources, the CH3OH
(J=2–1) and the C2H (N=3–2) lines toward all the
sources, and the c-C3H2 (32,1–21,2) lines toward 30 sources.

2. A correlation plot between the integrated intensities of the
C2H and CH3OH lines is prepared for the two cases with
and without the wing components. In both cases, no
correlation is seen between them. Similarly, no correla-
tion is found between the integrated intensities of the
c-C3H2 and CH3OH lines. In contrast, the integrated
intensities of the C2H and c-C3H2 lines show a positive
correlation, because these two species are thought to be
produced through related chemical pathways.

3. The column density ratios of C2H/CH3OH show a
significant diversity by 2 orders of magnitude. The hot
corino sources show the highest ratio, while the WCCC
source L1527, employed as a reference, shows the lowest
ratio. The ratios of most sources are in between these two
distinct cases.

4. The C2H/CH3OH ratio does not correlate with the
evolutionary indicators (Lbol/Lsmm and Tbol), nor the
envelope mass. On the other hand, we find that
the isolated sources and the sources located in cloud
peripheries tend to have chemical characteristics of WCCC
(i.e., high C2H/CH3OH ratios). In the Perseus molecular
cloud complex, the hot-corino-like sources (i.e., low
C2H/CH3OH ratios) do not exist in such regions, but are
concentrated in the central parts of the cluster-forming
regions. This result is qualitatively consistent with the idea
that the chemical diversity would originate from the
different duration times of the starless core phase after the
shielding of the interstellar UV radiation.

5. It is important to study, with high angular resolution
observations, whether the chemical composition seen in this
study is brought into inner-envelope/disk systems for each
source.
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