19 research outputs found

    Barriers to Outpatient Hospital-Based Cardiac Rehabilitation in Korean Patients With Acute Coronary Syndrome

    Get PDF
    ObjectiveTo investigate factors associated with enrollment and participation in cardiac rehabilitation (CR) in Korea.MethodsPatients admitted to four university hospitals with acute coronary syndrome between June 2014 and May 2016 were enrolled. The Cardiac Rehabilitation Barriers Scale (CRBS) made of 21-item questionnaire and divided in four subdomains was administered during admission. CRBS items used a 5-point Likert scale and ≄2.5 was considered as a barrier. Differences between CR non-attender and CR attender, or CR non-enroller and CR enroller in subscale and each items of CRBS were examined using the chi-square test.ResultsThe CR participation rate in four hospitals was 31% (170 of the 552). Logistical factors (odds ratio [OR]=7.61; 95% confidence interval [CI], 4.62–12.55) and comorbidities/functional status (OR=6.60; 95% CI, 3.95–11.01) were identified as a barrier to CR enrollment in the subdomain analysis. Among patients who were enrolled (agreed to participate in CR during admission), only work/time conflict was a significant barrier to CR participation (OR=2.17; 95% CI, 1.29–3.66).ConclusionDiverse barriers to CR participation were identified in patients with acute coronary syndrome. Providing the tailored model for CR according to the individual patient's barrier could improve the CR utilization. Further multicenter study with large sample size including other CR indication is required

    Cinnamic Acid Attenuates Peripheral and Hypothalamic Inflammation in High-Fat Diet-Induced Obese Mice

    No full text
    Obesity is closely linked to chronic inflammation in peripheral organs and the hypothalamus. Chronic consumption of a high-fat diet (HFD) induces the differentiation of Ly6chigh monocytes into macrophages in adipose tissue, the liver, and the brain, as well as the secretion of pro-inflammatory cytokines. Although cinnamon improves obesity and related diseases, it is unclear which components of cinnamon can affect macrophages and inflammatory cytokines. We performed in silico analyses using ADME, drug-likeness, and molecular docking simulations to predict the active compounds of cinnamon. Among the 82 active compounds of cinnamon, cinnamic acid (CA) showed the highest score of ADME, blood–brain barrier permeability, drug-likeness, and cytokine binding. We then investigated whether CA modulates obesity-induced metabolic profiles and macrophage-related inflammatory responses in HFD-fed mice. While HFD feeding induced obesity, CA ameliorated obesity and related symptoms, such as epididymal fat gain, insulin resistance, glucose intolerance, and dyslipidemia, without hepatic and renal toxicity. CA also improved HFD-induced tumor necrosis factor-α, fat deposition, and macrophage infiltration in the liver and adipose tissue. CA decreased Ly6chigh monocytes, adipose tissue M1 macrophages, and hypothalamic microglial activation. These results suggest that CA attenuates the peripheral and hypothalamic inflammatory monocytes/macrophage system and treats obesity-related metabolic disorders

    Low-Dose Dioxin Reduced Glucose Uptake in C2C12 Myocytes: The Role of Mitochondrial Oxidative Stress and Insulin-Dependent Calcium Mobilization

    No full text
    Chronic exposure to some environmental polluting chemicals (EPCs) is strongly associated with metabolic syndrome, and insulin resistance is a major biochemical abnormality in the skeletal muscle in patients with metabolic syndrome. However, the causal relationship is inconsistent and little is known about how EPCs affect the insulin signaling cascade in skeletal muscle. Here, we investigated whether exposure to 100 pM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) as a low dose of dioxin induces insulin resistance in C2C12 myocytes. The treatment with TCDD inhibited the insulin-stimulated glucose uptake and translocation of glucose transporter 4 (GLUT4). The low-dose TCDD reduced the expression of insulin receptor β (IRβ) and insulin receptor substrate (IRS)-1 without affecting the phosphorylation of Akt. The TCDD impaired mitochondrial activities, leading to reactive oxygen species (ROS) production and the blockage of insulin-induced Ca2+ release. All TCDD-mediated effects related to insulin resistance were still observed in aryl hydrocarbon receptor (AhR)-deficient myocytes and prevented by MitoTEMPO, a mitochondria-targeting ROS scavenger. These results suggest that low-dose TCDD stress may induce muscle insulin resistance AhR-independently and that mitochondrial oxidative stress is a novel therapeutic target for dioxin-induced insulin resistance

    Diffusible Signaling Factor, a Quorum-Sensing Molecule, Interferes with and Is Toxic Towards Bdellovibrio bacteriovorus 109J

    No full text
    Bdellovibrio bacteriovorus 109J is a predatory bacterium which lives by predating on other Gram-negative bacteria to obtain the nutrients it needs for replication and survival. Here, we evaluated the effects two classes of bacterial signaling molecules (acyl homoserine lactones (AHLs) and diffusible signaling factor (DSF)) have on B. bacteriovorus 109J behavior and viability. While AHLs had a non-significant impact on predation rates, DSF considerably delayed predation and bdelloplast lysis. Subsequent experiments showed that 50 ??M DSF also reduced the motility of attack-phase B. bacteriovorus 109J cells by 50% (38.2????????14.9 vs. 17????????8.9 ??m/s). Transcriptomic analyses found that DSF caused genome-wide changes in B. bacteriovorus 109J gene expression patterns during both the attack and intraperiplasmic phases, including the significant downregulation of the flagellum assembly genes and numerous serine protease genes. While the former accounts for the reduced speeds observed, the latter was confirmed experimentally with 50 ??M DSF completely blocking protease secretion from attack-phase cells. Additional experiments found that 30% of the total cellular ATP was released into the supernatant when B. bacteriovorus 109J was exposed to 200 ??M DSF, implying that this QS molecule negatively impacts membrane integrity. This is a preview of subscription content, log in to check access

    A Novel Aryl Hydrocarbon Receptor Antagonist HBU651 Ameliorates Peripheral and Hypothalamic Inflammation in High-Fat Diet-Induced Obese Mice

    No full text
    Obesity is a chronic peripheral inflammation condition that is strongly correlated with neurodegenerative diseases and associated with exposure to environmental chemicals. The aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear receptor activated by environmental chemical, such as dioxins, and also is a regulator of inflammation through interacting with nuclear factor (NF)-ÎșB. In this study, we evaluated the anti-obesity and anti-inflammatory activity of HBU651, a novel AhR antagonist. In BV2 microglia cells, HBU651 successfully inhibited lipopolysaccharide (LPS)-mediated nuclear localization of NF-ÎșB and production of NF-ÎșB-dependent proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ÎČ, and IL-6. It also restored LPS-induced mitochondrial dysfunction. While mice being fed a high-fat diet (HFD) induced peripheral and central inflammation and obesity, HBU651 alleviated HFD-induced obesity, insulin resistance, glucose intolerance, dyslipidemia, and liver enzyme activity, without hepatic and renal damage. HBU651 ameliorated the production of inflammatory cytokines and chemokines, proinflammatory Ly6chigh monocytes, and macrophage infiltration in the blood, liver, and adipose tissue. HBU651 also decreased microglial activation in the arcuate nucleus in the hypothalamus. These findings suggest that HBU651 may be a potential candidate for the treatment of obesity-related metabolic diseases

    Dynamic Hydrogen Production from Methanol/Water Photo-Splitting Using Core@Shell-Structured CuS@TiO2 Catalyst Wrapped by High Concentrated TiO2 Particles

    Get PDF
    This study focused on the dynamic hydrogen production ability of a core@shell-structured CuS@TiO2 photocatalyst coated with a high concentration of TiO2 particles. The rectangular-shaped CuS particles, 100 nm in length and 60 nm in width, were surrounded by a high concentration of anatase TiO2 particles (>4~5 mol). The synthesized core@shell-structured CuS@TiO2 particles absorbed a long wavelength (a short band gap) above 700 nm compared to that pure TiO2, which at approximately 300 nm, leading to easier electronic transitions, even at low energy. Hydrogen evolution from methanol/water photo-splitting over the core@shell-structured CuS@TiO2 photocatalyst increased approximately 10-fold compared to that over pure CuS. In particular, 1.9 mmol of hydrogen gas was produced after 10 hours when 0.5 g of 1CuS@4TiO2 was used at pH = 7. This level of production was increased to more than 4-fold at higher pH. Cyclic voltammetry and UV-visible absorption spectroscopy confirmed that the CuS in CuS@TiO2 strongly withdraws the excited electrons from the valence band in TiO2 because of the higher reduction potential than TiO2, resulting in a slower recombination rate between the electrons and holes and higher photoactivity

    The matricellular protein CCN5 inhibits fibrotic deformation of retinal pigment epithelium

    No full text
    Retinal pigment epithelium (RPE) plays an essential role in maintaining retinal function, and its defect is thought to be critically implicated in various ocular disorders. This study demonstrated that the matricellular protein CCN5 was down-regulated in ARPE-19 cells treated with the pro-fibrotic agent transforming growth factor (TGF)-beta. A recombinant adenovirus expressing CCN5 (AdCCN5) was used to restore the level of CCN5 in these cells. AdCCN5 prevented TGF-beta-induced fibrotic changes, including disruption of tight junctions, up-regulation of mesenchymal marker proteins, and down-regulation of epithelial marker proteins. In addition, AdCCN5 prevented TGF-beta-induced functional defects, including increased migratory activity and reduced phagocytic activity. Notably, AdCCN5 reversed morphological and functional defects pre-established by TGF-beta prior to viral infection. The CCN5 level was down-regulated in RPE of 18-month-old Ccl2(-/)(-) mice, which exhibited retinal defects. Restoration of the CCN5 level via intravitreal injection of a recombinant adeno-associated virus expressing CCN5 (AAV9-CCN5) normalized the altered expression of mesenchymal, epithelial, and functional marker proteins, as assessed by western blotting and immunohistochemistry. Taken together, these data suggest that down-regulation of CCN5 is associated with fibrotic deformation of RPE under pathological conditions and that restoration of the CCN5 level effectively promotes recovery of deformed RPE.Y

    Aryl-hydrocarbon receptor binding and the incidence of type 2 diabetes : the brazilian longitudinal study of adult health (ELSABrasil)

    No full text
    Persistent organic pollutants (POPs) may cause diabetes, in part through aryl hydrocarbon receptor (AhR) binding. Ensuing mitochondrial dysfunction is postulated to mediate this effect. We aim to investigate the association of POPs with incident diabetes indirectly by bio-assaying AhR ligand bioactivity and intracellular ATP level induced by participant serum samples
    corecore