5 research outputs found

    Prime-boost vaccination with a combination of proteosome-degradable and wild-type forms of two influenza proteins leads to augmented CTL response

    No full text
    Targeting viral antigens for proteosomal degradation has previously been proposed as a means for immunogenicity augmentation. However, utilization of modified unstable antigens may be insufficient for potent T-cell cross-presentation by APCs, a mechanism that requires high levels of the antigenic protein. Therefore, we hypothesized that a recombinant vaccine utilizing a combination of proteosome-sensitive and proteosome-resistant versions of an antigen in a prime-boost regimen may provide the most efficient CTL response. To address this hypothesis, we utilized conserved proteosome-resistant influenza A virus proteins M1 and NS1. Unstable versions of these polypeptides were constructed by destroying their 3D structure via truncations or short insertions into predicted alpha-helical structures. These modified polypeptides were stabilized in the presence of the proteosome inhibitor MG132, strongly suggesting that they are degraded via a ubiquitin-proteosome pathway. Importantly, with both M1 and NS1antigens, homologous DNA vaccination with a mixture of unstable and proteosome-resistant wt forms of these proteins resulted in significantly higher CTL activity than vaccination with either wt or degradable forms. The most dramatic effect was seen with NS1, where homologous immunization with a mixture of these two forms was the only regimen that produced a notable elevation of CTL response, compared to vaccination with the wt NS1. Additionally, for M1 protein, heterologous vaccination utilizing the unstable form as prime and wild-type form as boost, demonstrated significant augmentation of the CTL response. These data indicate that combining proteosome-sensitive and proteosome-resistant forms of an antigen during vaccination is advantageous. © 2008 Elsevier Ltd. All rights reserved

    Importance of mRNA secondary structural elements for the expression of influenza virus genes.

    No full text
    Development of novel vaccines and therapeutics often requires efficient expression of recombinant viral proteins. Here we show that mutations in essential functional regions of conserved influenza proteins NP and NS1, lead to reduced expression of these genes in vitro. According to in silico analysis, these mRNA regions possess distinct secondary structures sensitive to mutations. We identified a novel structural feature within a region in NS1 mRNA that encodes amino acids essential for NS1 function. Mutations altering this mRNA element lead to significantly reduced protein expression. Conversely, expression was not affected by mutations resulting in amino acid substitutions, when they were designed to preserve this secondary RNA structural element. Furthermore, altering this structure significantly reduced RNA transcription without affecting mRNA stability. Therefore, distinct internal secondary structures of viral mRNA may be important for viral gene expression. If such elements encode amino acids essential for the protein function, then early selection against mutations in this region will be beneficial for the virus. This might point at yet another mechanism of viral evolution, especially for RNA viruses. Finally, introducing mutations into viral genes while preserving their secondary RNA structure, suggests a new method for the generation of efficiently expressed recombinants of viral proteins
    corecore