27 research outputs found

    On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain.

    Get PDF
    We report an on-chip integrated metal graphene-silicon plasmonic Schottky photodetector with 85 mA/W responsivity at 1.55 μm and 7% internal quantum efficiency. This is one order of magnitude higher than metal-silicon Schottky photodetectors operated in the same conditions. At a reverse bias of 3 V, we achieve avalanche multiplication, with 0.37A/W responsivity and avalanche photogain ∼2. This paves the way to graphene integrated silicon photonics.We acknowledge funding from EU Graphene Flagship (No. 604391), ERC Grant Hetero2D, and EPSRC Grant Nos. EP/ K01711X/1, EP/K017144/1, EP/N010345/1, EP/M507799/ 1, and EP/L016087/1.This is the final version of the article. It first appeared from the American Chemical Society via https://doi.org/10.1021/acs.nanolett.5b0521

    Niobium diselenide superconducting photodetectors

    Get PDF
    We report the photoresponse of niobium diselenide (NbSe2_2), a transition metal dichalcogenide (TMD) which exhibits superconducting properties down to a single layer. Devices are built by using micro-mechanically cleaved 2 to 10 layers and tested under current bias using nano-optical mapping in the 350mK-5K range, where they are found to be superconducting. The superconducting state can be broken by absorption of light, resulting in a voltage signal when the devices are current biased. The response found to be energy dependent making the devices useful for applications requiring energy resolution, such as bolometry, spectroscopy and infrared imaging.Comment: 6 pages, 6 figure

    Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides.

    Get PDF
    We report compact, scalable, high-performance, waveguide integrated graphene-based photodetectors (GPDs) for telecom and datacom applications, not affected by dark current. To exploit the photothermoelectric (PTE) effect, our devices rely on a graphene/polymer/graphene stack with static top split gates. The polymeric dielectric, poly(vinyl alcohol) (PVA), allows us to preserve graphene quality and to generate a controllable p-n junction. Both graphene layers are fabricated using aligned single-crystal graphene arrays grown by chemical vapor deposition. The use of PVA yields a low charge inhomogeneity ∼8 × 1010 cm-2 at the charge neutrality point, and a large Seebeck coefficient ∼140 μV K-1, enhancing the PTE effect. Our devices are the fastest GPDs operating with zero dark current, showing a flat frequency response up to 67 GHz without roll-off. This performance is achieved on a passive, low-cost, photonic platform, and does not rely on nanoscale plasmonic structures. This, combined with scalability and ease of integration, makes our GPDs a promising building block for next-generation optical communication devices

    Efficient Excitation of Channel Plasmons in Tailored, UV-Lithography-Defined V-Grooves

    Get PDF
    [Image: see text] We demonstrate the highly efficient (>50%) conversion of freely propagating light to channel plasmon-polaritons (CPPs) in gold V-groove waveguides using compact 1.6 μm long waveguide-termination coupling mirrors. Our straightforward fabrication process, involving UV-lithography and crystallographic silicon etching, forms the coupling mirrors innately and ensures exceptional-quality, wafer-scale device production. We tailor the V-shaped profiles by thermal silicon oxidation in order to shift initially wedge-located modes downward into the V-grooves, resulting in well-confined CPPs suitable for nanophotonic applications

    Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling.

    Get PDF
    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties 1-7 . Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting 8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons 17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures

    Direct Temperature Mapping of Nanoscale Plasmonic Devices

    No full text
    Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography

    Silicon photonic acoustic detector (SPADE) using a silicon nitride microring resonator

    No full text
    Silicon photonics is an emerging platform for acoustic sensing, offering exceptional miniaturization and sensitivity. While efforts have focused on silicon-based resonators, silicon nitride resonators can potentially achieve higher Q-factors, further enhancing sensitivity. In this work, a 30 µm silicon nitride microring resonator was fabricated and coated with an elastomer to optimize acoustic sensitivity and signal fidelity. The resonator was characterized acoustically, and its capability for optoacoustic tomography was demonstrated. An acoustic bandwidth of 120 MHz and a noise-equivalent pressure of ∼ 7 mPa/Hz1/2 were demonstrated. The spatially dependent impulse response agreed with theoretical predictions, and spurious acoustic signals, such as reverberations and surface acoustic waves, had a marginal impact. High image fidelity optoacoustic tomography of a 20 µm knot was achieved, confirming the detector’s imaging capabilities. The results show that silicon nitride offers low signal distortion and high-resolution optoacoustic imaging, proving its versatility for acoustic imaging applications
    corecore