3,629 research outputs found

    Cloning Dropouts: Implications for Galaxy Evolution at High Redshift

    Full text link
    The evolution of high redshift galaxies in the two Hubble Deep Fields, HDF-N and HDF-S, is investigated using a cloning technique that replicates z~ 2-3 U dropouts to higher redshifts, allowing a comparison with the observed B and V dropouts at higher redshifts (z ~ 4-5). We treat each galaxy selected for replication as a set of pixels that are k-corrected to higher redshift, accounting for resampling, shot-noise, surface-brightness dimming, and the cosmological model. We find evidence for size evolution (a 1.7x increase) from z ~ 5 to z ~ 2.7 for flat geometries (Omega_M+Omega_LAMBDA=1.0). Simple scaling laws for this cosmology predict that size evolution goes as (1+z)^{-1}, consistent with our result. The UV luminosity density shows a similar increase (1.85x) from z ~ 5 to z ~ 2.7, with minimal evolution in the distribution of intrinsic colors for the dropout population. In general, these results indicate less evolution than was previously reported, and therefore a higher luminosity density at z ~ 4-5 (~ 50% higher) than other estimates. We argue the present technique is the preferred way to understand evolution across samples with differing selection functions, the most relevant differences here being the color cuts and surface brightness thresholds (e.g., due to the (1+z)^4 cosmic surface brightness dimming effect).Comment: 56 pages, 22 figures, accepted for publication in Ap

    Comparison of lightning location data and polarisation radar observations of clouds

    Get PDF
    Simultaneous observations of both the precipitation and the lightning associated with thunderstorms show that the lightning is within 3 km of the maximum precipitation echo. The intensity and type of the precipitation is observed with 500 m spatial accuracy using an S-band polarization radar and the position of the lightning is inferred from a low frequency magnetic direction finding location system. Empirical adjustment to the angles using the redundancy of the lightning data reduce this error. Radar echoes above 45dBZ may be caused by soft hail or hailstones, but similarly intense echoes may result from melting snow. The data show that a new polarization radar parameter, the linear depolarization ratio, can distinguish between soft hail and melting snow, and that the intense radar echoes associated with melting snow pose no threat of lightning. A lightning risk only exists when the radar indicates that the clouds contain soft hail or hailstones

    Theory and observations of ice particle evolution in cirrus using Doppler radar: evidence for aggregation

    Get PDF
    Vertically pointing Doppler radar has been used to study the evolution of ice particles as they sediment through a cirrus cloud. The measured Doppler fall speeds, together with radar-derived estimates for the altitude of cloud top, are used to estimate a characteristic fall time tc for the `average' ice particle. The change in radar reflectivity Z is studied as a function of tc, and is found to increase exponentially with fall time. We use the idea of dynamically scaling particle size distributions to show that this behaviour implies exponential growth of the average particle size, and argue that this exponential growth is a signature of ice crystal aggregation.Comment: accepted to Geophysical Research Letter

    Line Based Trinocular Stereo

    Get PDF
    An approach to solving the stereo correspondence problem in trinocular stereo vision is described. It is based on geometric matching constraints relating the orientation of lines extracted in three images taken from different viewpoints. These novel constraints are termed unary orientation and binary orientation constraints. Matching is achieved within an optimisation framework in which the constraints are encoded into a cost function that is optimised using the simulated annealing method. Results are demonstrated and the characteristics of the approach are explored on both synthetic and real 1 trinocular images.

    The Dearth of z~10 Galaxies in all HST Legacy Fields -- The Rapid Evolution of the Galaxy Population in the First 500 Myr

    Get PDF
    We present an analysis of all prime HST legacy fields spanning >800 arcmin^2 for the search of z~10 galaxy candidates and the study of their UV luminosity function (LF). In particular, we present new z~10 candidates selected from the full Hubble Frontier Field (HFF) dataset. Despite the addition of these new fields, we find a low abundance of z~10 candidates with only 9 reliable sources identified in all prime HST datasets that include the HUDF09/12, the HUDF/XDF, all the CANDELS fields, and now the HFF survey. Based on this comprehensive search, we find that the UV luminosity function decreases by one order of magnitude from z~8 to z~10 at all luminosities over a four magnitude range. This also implies a decrease of the cosmic star-formation rate density by an order of magnitude within 170 Myr from z~8 to z~10. We show that this accelerated evolution compared to lower redshift can entirely be explained by the fast build-up of the dark matter halo mass function at z>8. Consequently, the predicted UV LFs from several models of galaxy formation are in good agreement with this observed trend, even though the measured UV LF lies at the low end of model predictions. In particular, the number of only 9 observed candidate galaxies is lower, by ~50%, than predicted by galaxy evolution models. The difference is generally still consistent within the Poisson and cosmic variance uncertainties. However, essentially all models predict larger numbers than observed. We discuss the implications of these results in light of the upcoming James Webb Space Telescope mission, which is poised to find much larger samples of z~10 galaxies as well as their progenitors at less than 400 Myr after the Big Bang.Comment: 13 pages, 6 figures, minor updates to match accepted versio
    • …
    corecore