16 research outputs found

    Investigation of energy usage and emissions on plug-in and hybrid electric vehicle

    Get PDF
    Jedan od osnovnih zadataka u automobilskoj industriji je razvoj hibridnih električnih vozila (HEVs) kao primarnog kandidata za poboljšanje učinkovitosti goriva i smanjenje ispušnih plinova. Ovo se istraživanje bavi učinkom aktualnog modela pogona i upravljanja na konvencionalna i plug-in hibridna električna vozila (PHEV). Najprije se predlaže postupak razvoja pogonskog ciklusa za stvarne uvjete. Tada se za HEVs i PHEVs istražuju učinci pogonskog modela i načina upravljanja potrošnjom energije kao glavnih čimbenika koji bitno djeluju na potrošnju goriva i ispuštanje plinova koji zagađuju okolinu. U tu je svrhu za sustav upravljanja energijom razvijen upravljač neizrazite logike optimiziran genetskim algoritmom. Tada je rad vozila simuliran u ADVISOR-u. Rezultati simulacije pokazuju učinkovitost pristupa kojim se smanjuje potrošnja goriva i količina ispušnih plinova. Nadalje, ti rezultati pokazuju da PHEVs u usporedbi s HEVs poboljšavaju učinkovitost goriva i smanjuju količinu ispušnih plinova u stvarnom pogonu.One of the major issues in automotive industry is to develop hybrid electric vehicles (HEVs) as the prime candidate for improving fuel efficiency and emissions reduction. This study addresses the impact of an actual drive pattern and control strategy on the conventional and plug-in hybrid electric vehicles (PHEV). In the first step the development procedure of driving cycle for real condition is proposed. Then effects of driving pattern and energy management strategy as the main factors, which strongly affect the fuel consumption and emission of pollutants, are investigated for HEVs and PHEVs. For this purpose fuzzy logic controller which is optimized with genetic algorithm is developed for energy management system. Then vehicle performance is simulated in ADVISOR. Simulation results demonstrate the effectiveness of the approach for reducing the fuel consumption and emissions. Furthermore, simulation results indicate that PHEVs in comparison to HEVs improve fuel efficiency and reduce emissions in real world driving cycle

    An Abaqus plugin for efficient damage initiation hotspot identification in large-scale composite structures with repeated features

    Get PDF
    © 2021 Elsevier Ltd Identifying the hotspots for damage initiation in large-scale composite structure designs presents a significant challenge due to the high modelling cost. For most industrial applications, the finite element (FE) models are often coarsely meshed with shell elements and used to predict the global stiffness and internal loads. Because of the lack of detailed descriptions for the composite materials and 3D stress states, most of the established failure criteria are not applicable. In this work we present an Abaqus plugin tool which implements a framework to identify the hotspots by using a pre-computed database generated for specific, heavily-repeated feature types based on a given structural model. Developed with an object-oriented implementation in Python, this software is split into two main parts, specifically for feature generation and structural analysis. The pre-computed model presents a full 3D description for the considered feature and works as a submodel to the coarse structure model driven by a one-way transfer of the boundary conditions. The presented framework is an analysis tool for efficient sizing of large-scale composite structures, as it enables 3D damage analysis of the structures in critical zones with significant savings of the modelling and computational cost. The results are compared with conventional FE modelling and satisfactory agreement is observed. In addition, the software also enables the pre-computed database to be stored in an HDF5 data file for further reuse on new structures with the same feature

    Design of an aircraft generator with radial force control.

    Get PDF
    With the increasing electrical energy demands in aviation propulsion systems, the increase in the onboard generators’ power density is inevitable. During the flight, forces coming from the gearbox or gyroscopic forces generated by flight manoeuvres like take-off and landing can act on the generators’ bearings, which can lead to wear and fatigue in the bearings. Utilizing the radial force control concept in the electrical machine can relieve loads from the bearings that not only minimize the bearing losses but also increase bearing life. The objective of the MAGLEV project (Measurement and Analysis of Generator bearing Loads and Efficiency with Validation) is to study, demonstrate, and test a new class of high-speed generators with radial force control. In this paper, design steps of this type of generator and its test rig are presented and the measurement methodology used for radial force control is explained. The concept is developed in an electrical machine and is validated on a test rig by measuring required parameters like shaft displacement, vibrations and bearing temperature. Additionally, the friction moment of each generator’s bearings is measured and validated in a separate test rig under comparable conditions to the bearing loads in the generator. Therefore, a novel approach to determine precisely the bearing friction in a radial load unit, rotatably supported by an additional needle bearing is used, which shows a good agreement with the calculated friction. Furthermore, new calculation methods for the operating behavior of cylindrical roller bearings with clearance are presented, which are utilized in the generator test rig

    The expression of miRNA-152-3p and miRNA-185 in tumor tissues versus margin tissues of patients with chemo-treated breast cancer

    No full text
    Abstract Objective Breast cancer (BC) is the most significant and lethal type of cancer in women. Although there are many newly develop chemotherapy drugs for patients with BC treating at various stages, drug resistance is the most important obstacle in their effectiveness for BC treatment. On the other hand, microRNAs are considered key regulators of genes involved in carcinogenesis and chemoresistance in cancers. The purpose of this study was to evaluate the role of miR-152-3p and miR-185 in intrinsic chemoresistance and proliferation of BC. In addition, the potential role of these miRNAs during chemoresistance was evaluated through possible signaling pathways. Results Here, miR-152-3p was significantly downregulated in tumor tissues compared to the corresponding margin tissues in patients with BC (p-value ≥ 0.04407 and fold change = − 2.0552). In contrast, no statistically significant difference was observed in the miR-185 expression between the two groups. Furthermore, no significant correlation was found between the expression of these two miRNAs and subfactors, including cancer family history, abortion, and age. Downregulation of miR-152-3p could be considered a promising regulator of BC chemoresistance

    The Friction of Radially Loaded Hybrid Spindle Bearings under High Speeds

    No full text
    Friction losses are an important parameter for evaluating the operational behaviour of high-speed rolling bearings. Specifically, in machine tool applications, the bearings are subjected to high radial loads and high speeds, which lead to increased forces in the rolling contact and, as a result, increased bearing friction. In this high-speed application, hybrid spindle bearings, typically made of ceramic balls and steel raceways, show better frictional behaviour compared to full steel-made bearings. Therefore, precise knowledge of the friction characteristics of high-speed hybrid bearings can improve friction models and generalise them to spindle bearings with different types, geometries, and operating conditions. In this article, a new straightforward and cost-efficient method for measuring the frictional torque in spindle bearings is presented. A rigidly arranged 7008 hybrid spindle bearing pair was tested up to rotational speeds of 24,000 rpm and high radial loads of 3 kN. The effects of oil–air and grease lubrication are discussed in characteristic diagrams of the tested bearings. Then, based on the test results, a friction calculation model is presented and validated for the outer race control and minimised power dissipation regarding the influence of radial forces

    The role of epigenetics and non-coding RNAs in autophagy: A new perspective for thorough understanding

    No full text
    Autophagy is a major self-degradative intracellular process required for the maintenance of homeostasis and promotion of survival in response to starvation. It plays critical roles in a large variety of physiological and pathological processes. On the other hand, aberrant regulation of autophagy can lead to various cancers and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Crohn's disease. Emerging evidence strongly supports that epigenetic signatures, related non-coding RNA profiles, and their cross-talking are significantly associated with the control of autophagic responses. Therefore, it may be helpful and promising to manage autophagic processes by finding valuable markers and therapeutic approaches. Although there is a great deal of information on the components of autophagy in the cytoplasm, the molecular basis of the epigenetic regulation of autophagy has not been completely elucidated. In this review, we highlight recent research on epigenetic changes through the expression of autophagy-related genes (ATGs), which regulate autophagy, DNA methylation, histone modifications as well as non-coding RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and their relationship with human diseases, that play key roles in causing autophagy-related diseases

    Practical Implementation and Associated Challenges of Integrated Torque Limiter

    No full text
    Evolving of aircraft design towards further electrification requires safe and fault-free operation of all the components. More electric aircraft are increasingly utilizing electro-mechanical actuators (EMA). EMAs are prone to jamming and subsequent failure due to large forces on the shaft. Large forces are generated due to the high reflected inertia of the electric machine rotor. To limit the force acting on the shaft, a torque limiting device is connected to the power train which can separate the rotating mass of the electric machine from the power train. In this paper, a concept of integration of torque limiter and the electric machine rotor is presented to reduce overall volume and mass. It is connected closely with the rotor, within the motor envelope. A commercially available torque limiter and an electric machine designed for actuator application are used to demonstrate the concept. While essential for safety, the torque limiter adds to the mass and size of the overall EMA. Conventionally, the torque limiter is connected externally to the motor shaft. Key performance requirements of the machine and torque limiter are provided. Structural analysis of the proposed integrated system is carried out to show the viability. Considering the high-speed operation of the motor, rotor dynamic is analyzed to ensure resonant modes are not encountered within operating speed. Mechanical design of the system, considering assembly, is presented. Integration is shown to reduce the overall mass and size of the system compared with a conventional system, as well as better dynamic behavior and higher bearing life

    Surface Permanent Magnet Synchronous Machines: High Speed Design and Limits

    Get PDF
    Surface permanent magnet synchronous machines are one of the most widely adopted machine topologies in high-speed applications where efficiency and power factor cannot be compromised. Although the design of such machine type has been extensively investigated in both industry and academia, this work aims at addressing its limitations when applied in high-speed applications. First, this paper proposes an accurate design methodology for continuous-duty high-speed surface-mounted permanent magnets synchronous machines, capable of accounting for the rise of the speed-dependent losses and structural needs with a limited impact on the computational burden. The outlined approach can be used to speed-up the initial design stage as it allows to reduce the number of solutions to evaluate before commencing the refinement stages required before the definition of the final design. Indeed, the introduced design approach is used to systematically assess the maximum power capability as function of the maximum speed and the airgap thickness for a given outer envelope and cooling system. The influence of the high-speed limiting factors is deeply investigated also considering their effects on the machine geometries providing the highest torque. The selection of the final design is discussed and justified. Experimental results of the 4.2kW-80kprm prototype validate the design methodology

    The Friction of Radially Loaded Hybrid Spindle Bearings under High Speeds

    No full text
    Friction losses are an important parameter for evaluating the operational behaviour of high-speed rolling bearings. Specifically, in machine tool applications, the bearings are subjected to high radial loads and high speeds, which lead to increased forces in the rolling contact and, as a result, increased bearing friction. In this high-speed application, hybrid spindle bearings, typically made of ceramic balls and steel raceways, show better frictional behaviour compared to full steel-made bearings. Therefore, precise knowledge of the friction characteristics of high-speed hybrid bearings can improve friction models and generalise them to spindle bearings with different types, geometries, and operating conditions. In this article, a new straightforward and cost-efficient method for measuring the frictional torque in spindle bearings is presented. A rigidly arranged 7008 hybrid spindle bearing pair was tested up to rotational speeds of 24,000 rpm and high radial loads of 3 kN. The effects of oil–air and grease lubrication are discussed in characteristic diagrams of the tested bearings. Then, based on the test results, a friction calculation model is presented and validated for the outer race control and minimised power dissipation regarding the influence of radial forces
    corecore