11 research outputs found

    Temperature Dependence of Clumped Isotopes (∆47) in Aragonite

    Get PDF
    Clumped isotope thermometry can independently constrain the formation temperatures of carbonates, but a lack of precisely temperature-controlled calibration samples limits its application on aragonites. To address this issue, we present clumped isotope compositions of aragonitic bivalve shells grown under highly controlled temperatures (1–18°C), which we combine with clumped isotope data from natural and synthetic aragonites from a wide range of temperatures (1–850°C). We observe no discernible offset in clumped isotope values between aragonitic foraminifera, mollusks, and abiogenic aragonites or between aragonites and calcites, eliminating the need for a mineral-specific calibration or acid fractionation factor. However, due to non-linear behavior of the clumped isotope thermometer, including high-temperature (>100°C) datapoints in linear clumped isotope calibrations causes them to underestimate temperatures of cold (1–18°C) carbonates by 2.7 ± 2.0°C (95% confidence level). Therefore, clumped isotope-based paleoclimate reconstructions should be calibrated using samples with well constrained formation temperatures close to those of the samples

    North Atlantic surface ocean warming and salinization in response to middle Eocene greenhouse warming

    Get PDF
    Quantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (ή18Osw) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ47) and oxygen isotope (ή18Oc) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)–based SSTs but lower than biomarker-based SSTs for the same interval. We find a transient ~0.5‰ shift toward higher (ή18Osw), which implies increased salinity in the North Atlantic subtropical gyre and potentially a poleward expansion of its northern boundary in response to greenhouse warming. These observations provide constraints on dynamic ocean response to warming events, which are consistent with theory and model simulations predicting an enhanced hydrological cycle under global warming

    IODP Leg 342 Site U1411 planktic foraminifera across the Eocene Oligocene Transition

    No full text
    Images of planktic foraminifera from IODP Leg 342 Site U1411 across the Eocene Oligocene Transition. The datapackage contains two folders, one for Scanning Electron Microscope (SEM) photographs and one for colour photographs. The SEM photographs were generated on a JEOL-Neoscope JCM6000 Benchtop SEM. Both cleaned and uncleaned samples were prepared for SEM imaging by placing the fragments on two-sided carbon sticker and adhering 4 nm of Pt/Pd-target. Colour microscope photographs to establish foraminifera preservation and species identification were made using a Keyence VHX-5000 digital microscope. Questions and comments can be addressed to i.j.kocken uu nl. Or, if this email address no longer functions, find me at my ORCID: https://orcid.org/0000-0003-2196-871

    Temperature Dependence of Clumped Isotopes (∆47) in Aragonite

    Get PDF
    Clumped isotope thermometry can independently constrain the formation temperatures of carbonates, but a lack of precisely temperature-controlled calibration samples limits its application on aragonites. To address this issue, we present clumped isotope compositions of aragonitic bivalve shells grown under highly controlled temperatures (1–18°C), which we combine with clumped isotope data from natural and synthetic aragonites from a wide range of temperatures (1–850°C). We observe no discernible offset in clumped isotope values between aragonitic foraminifera, mollusks, and abiogenic aragonites or between aragonites and calcites, eliminating the need for a mineral-specific calibration or acid fractionation factor. However, due to non-linear behavior of the clumped isotope thermometer, including high-temperature (>100°C) datapoints in linear clumped isotope calibrations causes them to underestimate temperatures of cold (1–18°C) carbonates by 2.7 ± 2.0°C (95% confidence level). Therefore, clumped isotope-based paleoclimate reconstructions should be calibrated using samples with well constrained formation temperatures close to those of the samples

    Temperature Dependence of Clumped Isotopes (∆47) in Aragonite

    No full text
    Clumped isotope thermometry can independently constrain the formation temperatures of carbonates, but a lack of precisely temperature-controlled calibration samples limits its application on aragonites. To address this issue, we present clumped isotope compositions of aragonitic bivalve shells grown under highly controlled temperatures (1–18°C), which we combine with clumped isotope data from natural and synthetic aragonites from a wide range of temperatures (1–850°C). We observe no discernible offset in clumped isotope values between aragonitic foraminifera, mollusks, and abiogenic aragonites or between aragonites and calcites, eliminating the need for a mineral-specific calibration or acid fractionation factor. However, due to non-linear behavior of the clumped isotope thermometer, including high-temperature (>100°C) datapoints in linear clumped isotope calibrations causes them to underestimate temperatures of cold (1–18°C) carbonates by 2.7 ± 2.0°C (95% confidence level). Therefore, clumped isotope-based paleoclimate reconstructions should be calibrated using samples with well constrained formation temperatures close to those of the samples

    Synchronous tropical and polar temperature evolution in the Eocene

    No full text
    Palaeoclimate reconstructions of periods with warm climates and high atmospheric CO2 concentrations are crucial for developing better projections of future climate change. Deep-ocean1,2 and high-latitude3 palaeotemperature proxies demonstrate that the Eocene epoch (56 to 34 million years ago) encompasses the warmest interval of the past 66 million years, followed by cooling towards the eventual establishment of ice caps on Antarctica. Eocene polar warmth is well established, so the main obstacle in quantifying the evolution of key climate parameters, such as global average temperature change and its polar amplification, is the lack of continuous high-quality tropical temperature reconstructions. Here we present a continuous Eocene equatorial sea surface temperature record, based on biomarker palaeothermometry applied on Atlantic Ocean sediments. We combine this record with the sparse existing data4-6 to construct a 26-million-year multi-proxy, multi-site stack of Eocene tropical climate evolution. We find that tropical and deep-ocean temperatures changed in parallel, under the influence of both long-term climate trends and short-lived events. This is consistent with the hypothesis that greenhouse gas forcing7,8, rather than changes in ocean circulation9,10, was the main driver of Eocene climate. Moreover, we observe a strong linear relationship between tropical and deep-ocean temperatures, which implies a constant polar amplification factor throughout the generally ice-free Eocene. Quantitative comparison with fully coupled climate model simulations indicates that global average temperatures were about 29, 26, 23 and 19 degrees Celsius in the early, early middle, late middle and late Eocene, respectively, compared to the preindustrial temperature of 14.4 degrees Celsius. Finally, combining proxy- and model-based temperature estimates with available CO2 reconstructions8 yields estimates of an Eocene Earth system sensitivity of 0.9 to 2.3 kelvin per watt per square metre at 68 per cent probability, consistent with the high end of previous estimates11

    North Atlantic surface ocean warming and salinization in response to middle Eocene greenhouse warming

    No full text
    Quantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (ή18Osw) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ47) and oxygen isotope (ή18Oc) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)–based SSTs but lower than biomarker-based SSTs for the same interval. We find a transient ~0.5‰ shift toward higher ή18Osw, which implies increased salinity in the North Atlantic subtropical gyre and potentially a poleward expansion of its northern boundary in response to greenhouse warming. These observations provide constraints on dynamic ocean response to warming events, which are consistent with theory and model simulations predicting an enhanced hydrological cycle under global warming

    North Atlantic surface ocean warming and salinization in response to middle Eocene greenhouse warming

    No full text
    Quantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (ή18Osw) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ47) and oxygen isotope (ή18Oc) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)–based SSTs but lower than biomarker-based SSTs for the same interval. We find a transient ~0.5 ‰ shift toward higher ή18Osw, which implies increased salinity in the North Atlantic subtropical gyre and potentially a poleward expansion of its northern boundary in response to greenhouse warming. These observations provide constraints on dynamic ocean response to warming events, which are consistent with theory and model simulations predicting an enhanced hydrological cycle under global warming

    InterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards

    No full text
    International audienceIncreased use and improved methodology of carbonate clumped isotope thermometry has greatly enhanced our ability to interrogate a suite of Earth-system processes. However, interlaboratory discrepancies in quantifying carbonate clumped isotope (Δ47) measurements persist, and their specific sources remain unclear. To address interlaboratory differences, we first provide consensus values from the clumped isotope community for four carbonate standards relative to heated and equilibrated gases with 1,819 individual analyses from 10 laboratories. Then we analyzed the four carbonate standards along with three additional standards, spanning a broad range of ή47 and Δ47 values, for a total of 5,329 analyses on 25 individual mass spectrometers from 22 different laboratories. Treating three of the materials as known standards and the other four as unknowns, we find that the use of carbonate reference materials is a robust method for standardization that yields interlaboratory discrepancies entirely consistent with intralaboratory analytical uncertainties. Carbonate reference materials, along with measurement and data processing practices described herein, provide the carbonate clumped isotope community with a robust approach to achieve interlaboratory agreement as we continue to use and improve this powerful geochemical tool. We propose that carbonate clumped isotope data normalized to the carbonate reference materials described in this publication should be reported as Δ47 (I-CDES) values for Intercarb-Carbon Dioxide Equilibrium Scale

    Synchronous tropical and polar temperature evolution in the Eocene

    No full text
    Palaeoclimate reconstructions of periods with warm climates and high atmospheric CO2 concentrations are crucial for developing better projections of future climate change. Deep-ocean1,2 and high-latitude3 palaeotemperature proxies demonstrate that the Eocene epoch (56 to 34 million years ago) encompasses the warmest interval of the past 66 million years, followed by cooling towards the eventual establishment of ice caps on Antarctica. Eocene polar warmth is well established, so the main obstacle in quantifying the evolution of key climate parameters, such as global average temperature change and its polar amplification, is the lack of continuous high-quality tropical temperature reconstructions. Here we present a continuous Eocene equatorial sea surface temperature record, based on biomarker palaeothermometry applied on Atlantic Ocean sediments. We combine this record with the sparse existing data4-6 to construct a 26-million-year multi-proxy, multi-site stack of Eocene tropical climate evolution. We find that tropical and deep-ocean temperatures changed in parallel, under the influence of both long-term climate trends and short-lived events. This is consistent with the hypothesis that greenhouse gas forcing7,8, rather than changes in ocean circulation9,10, was the main driver of Eocene climate. Moreover, we observe a strong linear relationship between tropical and deep-ocean temperatures, which implies a constant polar amplification factor throughout the generally ice-free Eocene. Quantitative comparison with fully coupled climate model simulations indicates that global average temperatures were about 29, 26, 23 and 19 degrees Celsius in the early, early middle, late middle and late Eocene, respectively, compared to the preindustrial temperature of 14.4 degrees Celsius. Finally, combining proxy- and model-based temperature estimates with available CO2 reconstructions8 yields estimates of an Eocene Earth system sensitivity of 0.9 to 2.3 kelvin per watt per square metre at 68 per cent probability, consistent with the high end of previous estimates11
    corecore