27 research outputs found

    Effect of exercise training on neuromuscular function of elbow flexors and knee extensors of type 2 diabetic patients

    Get PDF
    Purpose: The effects of exercise training on neuromuscular function of arm and leg muscles in type 2 diabetic patients (T2D) was investigated. Methods: Eight T2D sedentary male patients (61.0 ± 2.3 years) and eight sedentary healthy age matched control subjects (H, 63.9 ± 3.8 years) underwent a 16-week supervised combined endurance and resistance exercise program. Before and after training, maximal isometric (MVIC), isokinetic (15, 30, 60, 120, 180, 240° s−1) torque and muscle endurance of the elbow flexors (EF) and knee extensors (KE) were assessed. Simultaneously, surface electromyographic signals from biceps brachii (BB) and vastus lateralis (VL) muscles were recorded and muscle fiber conduction velocity (MFCV) estimated. Results: Following training, maximal torque of the KE increased during MVIC and isokinetic contractions at 15 and 30° s−1 in the T2D (+19.1 ± 2.7% on average; p 0.05). MFCV recorded from the VL during MVIC and during isokinetic contractions at 15 and 30° s−1 increased (+11.2 ± 1.6% on average; p < 0.01), but in the diabetic group only. Muscular endurance was lower in T2D (20.1 ± 0.7 s) compared to H (26.9 ± 1.3 s), with an associated increase in the MFCV slope after training in the KE muscles only. Conclusion: The effect of a combined exercise training on muscle torque appears to be angular velocity-specific in diabetic individuals, with a more pronounced effect on KE muscles and at slow contraction velocities, along with an associated increase in the MFCV. MFCV appears to be a more sensitive marker than torque in detecting the early signs of neuromuscular function reconditioning

    Ventilation and perceived exertion are sensitive to changes in exercise tolerance: arm+leg cycling vs. leg cycling

    Get PDF
    Purpose: Growing evidence suggests that respiratory frequency (fR) is a marker of physical effort and a variable sensitive to changes in exercise tolerance. The comparison between arm+leg cycling (Arm+leg) and leg cycling (Leg) has the potential to further test this notion because a greater exercise tolerance is expected in the Arm+leg modality. We systematically compared Arm+leg vs. Leg using different performance tests.Methods: Twelve males underwent six performance tests in separate, randomized visits. Three tests were performed in each of the two exercise modalities, i.e. an incremental test and two time-to-exhaustion (TTE) tests performed at 90% or 75% of the peak power output reached in the Leg incremental test (PPOLeg). Exercise tolerance, perceived exertion, and cardiorespiratory variables were recorded during all the tests.Results: A greater exercise tolerance (p &lt; 0.001) was found for Arm+leg in the incremental test (337 ± 32 W vs. 292 ± 28 W), in the TTE test at 90% of PPOLeg (638 ± 154 s vs. 307 ± 67 s), and in the TTE test at 75% of PPOLeg (1,675 ± 525 s vs. 880 ± 363 s). Unlike V˙O2 and heart rate, both fR and minute ventilation were lower (p &lt; 0.003) at isotime in all the Arm+leg tests vs. Leg tests. Furthermore, a lower perceived exertion was observed in the Arm+leg tests, especially during the TTE tests (p &lt; 0.001).Conclusion: Minute ventilation, fR and perceived exertion are sensitive to the improvements in exercise tolerance observed when comparing Arm+leg vs. Leg, unlike V˙O2 and heart rate

    A comparison of different methods to analyse data collected during time-to-exhaustion tests

    Get PDF
    Despite their widespread use in exercise physiology, time-to-exhaustion (TTE) tests present an often-overlooked challenge to researchers, which is how to computationally deal with between- and within-subject differences in exercise duration. We aimed to verify the best analysis method to overcome this problem

    Muscular Adaptations to Concurrent Resistance Training and High-Intensity Interval Training in Adults with Type 2 Diabetes: A Pilot Study

    Get PDF
    This pilot study aimed to compare the effects of eight weeks of concurrent resistance training (RT) and high-intensity interval training (HIIT) vs. RT alone on muscle performance, mass and quality in adults with type 2 diabetes (T2DM). Twelve T2DM adults were randomly allocated to the RT + HIIT (n = 5) or RT (n = 7) group. Before and after training, maximal oxygen uptake (VO2max), muscle strength and power were evaluated by calorimetry, dynamometry and one-repetition maximum (1RM) test. Quadriceps muscle volume was determined by MRI, and muscle quality was estimated. After RT, VO2max (+12%), knee muscle power (+20%), quadriceps muscle volume (+5.9%) and quality (leg extension, +65.4%; leg step-up, +223%) and 1RM at leg extension (+66.4%), leg step-up (+267%), lat pulldown (+60.9%) and chest press (+61.2%) significantly increased. The RT + HIIT group improved on VO2max (+27%), muscle volume (+6%), muscle power (+9%) and 1RM at lat pulldown (+47%). No other differences were detected. Among groups, changes in muscle quality at leg step-up and leg extension and VO2max were significantly different. The combination of RT and HIIT effectively improves muscle function and size and increases cardiorespiratory fitness in adults with T2DM. However, HIIT combined with RT may interfere with the development of muscle quality

    Differential control of respiratory frequency and tidal volume during high-intensity interval training

    Get PDF
    New Findings: What is the central question of this study? By manipulating recovery intensity and exercise duration during high-intensity interval training (HIIT), we tested the hypothesis that fast inputs contribute more than metabolic stimuli to respiratory frequency (fR) regulation. What is the main finding and its importance? Respiratory frequency, but not tidal volume, responded rapidly and in proportion to changes in workload during HIIT, and was dissociated from some markers of metabolic stimuli in response to both experimental manipulations, suggesting that fast inputs contribute more than metabolic stimuli to fR regulation. Differentiating between fR and tidal volume may help to unravel the mechanisms underlying exercise hyperpnoea. Given that respiratory frequency (fR) has been proposed as a good marker of physical effort, furthering the understanding of how fR is regulated during exercise is of great importance. We manipulated recovery intensity and exercise duration during high-intensity interval training (HIIT) to test the hypothesis that fast inputs (including central command) contribute more than metabolic stimuli to fR regulation. Seven male cyclists performed an incremental test, a 10 and a 20 min continuous time trial (TT) as preliminary tests. Subsequently, recovery intensity and exercise duration were manipulated during HIIT (30 s work and 30 s active recovery) by performing four 10 min and one 20 min trial (recovery intensities of 85, 70, 55 and 30% of the 10 min TT mean workload; and 85% of the 20 min TT mean workload). The work intensity of the HIIT sessions was self-paced by participants to achieve the best performance possible. When manipulating recovery intensity, fR, but not tidal volume (VT), showed a fast response to the alternation of the work and recovery phases, proportional to the extent of workload variations. No association between fR and gas exchange responses was observed. When manipulating exercise duration, fR and rating of perceived exertion were dissociated from VT, carbon dioxide output and oxygen uptake responses. Overall, the rating of perceived exertion was strongly correlated with fR (r = 0.87; P < 0.001) but not with VT. These findings may reveal a differential control of fR and VT during HIIT, with fast inputs appearing to contribute more than metabolic stimuli to fR regulation. Differentiating between fR and VT may help to unravel the mechanisms underlying exercise hyperpnoea

    The Effects of Postprandial Walking on the Glucose Response after Meals with Different Characteristics

    No full text
    We evaluated the effect of postprandial walking on the post-meal glycemic response after meals with different characteristics. Twenty-one healthy young volunteers participated in one of two randomized repeated measures studies. Study 1 (10 participants) assessed the effects of 30 min of brisk walking after meals with different carbohydrate (CHO) content (0.75 or 1.5 g of CHO per kg/body weight). Study 2 (11 participants) evaluated the effects of 30 min of brisk walking after consuming a mixed meal or a CHO drink matched for absolute CHO content (75 g). Postprandial brisk walking substantially reduced (p < 0.009) the glucose peak in both studies, with no significant differences across conditions. When evaluating the glycemic response throughout the two hours post-meal, postprandial walking was more effective after consuming a lower CHO content (Study 1), and similarly effective after a mixed meal or a CHO drink (Study 2), although higher glucose values were observed when consuming the CHO drink. Our findings show that a 30 min postprandial brisk walking session improves the glycemic response after meals with different CHO content and macronutrient composition, with implications for postprandial exercise prescription in daily life scenarios

    The Effect of Different Postprandial Exercise Types on Glucose Response to Breakfast in Individuals with Type 2 Diabetes

    No full text
    Postprandial exercise represents an important tool for improving the glycemic response to a meal. This study evaluates the effects of the combination and sequence of different exercise types on the postprandial glycemic response in patients with type 2 diabetes. In this repeated-measures crossover study, eight patients with type 2 diabetes performed five experimental conditions in a randomized order: (i) uninterrupted sitting (CON); (ii) 30 min of moderate intensity aerobic exercise (walking) (A); (iii) 30 min of combined aerobic and resistance exercise (AR); (iv) 30 min of combined resistance and aerobic exercise (RA); and (v) 15 min of resistance exercise (R). All the exercise sessions started 30 min after the beginning of a standardized breakfast. All the exercise conditions showed a significant attenuation of the post-meal glycemic excursion (P &lt; 0.003) and the glucose incremental area under the curve at 0–120 min (P &lt; 0.028) and 0–180 min (P &lt; 0.048) compared with CON. A greater reduction in the glycemic peak was observed in A and AR compared to RA (P &lt; 0.02). All the exercise types improved the post-meal glycemic response in patients with type 2 diabetes, with greater benefits when walking was performed alone or before resistance exercise

    Neuromuscular dysfunction in type 2 diabetes. underlying mechanisms and effect of resistance training

    No full text
    Summary: Diabetic patients are at higher risk of developing physical disabilities than non-diabetic subjects. Physical disability appears to be related, at least in part, to muscle dysfunction. Several studies have reported reduced muscle strength and power under dynamic and static conditions in both the upper and lower limbs of patients with type 2 diabetes. Additional effects of diabetes include a reduction in muscle mass, quality, endurance and an alteration in muscle fibre composition, though the available data on these parameters are conflicting. The impact of diabetes on neuromuscular function has been related to the co-existence of long-term complications. Peripheral neuropathy has been shown to affect muscle by impairing motor nerve conduction. Also, vascular complications may contribute to the decline in muscle strength. However, muscle dysfunction occurs early in the course of diabetes and affects also the upper limbs, thus suggesting that it may develop independently of micro and macrovascular disease. A growing body of evidence indicates that hyperglycaemia may cause an alteration of the intrinsic properties of the muscle to generate force, via several mechanisms. Recently, resistance exercise has been shown to be an effective strategy to counteract the deterioration of muscular performance. High-intensity exercise seems to provide greater benefits than moderate-intensity training, whereas the effect of a power training is yet unknown. This article reviews the available literature on the impairment of muscle function induced by diabetes, the underlying mechanisms, and the effect of resistance training on this defect

    The impact of type 1 diabetes and diabetic polyneuropathy on muscle strength and fatigability

    No full text
    Aims: Although it is widely accepted that diabetic polyneuropathy (DPN) is linked to a marked decline in neuromuscular performance, information on the possible impact of type 1 diabetes (T1D) on muscle strength and fatigue remains unclear. The purpose of this study was to investigate the effects of T1D and DPN on strength and fatigability in knee extensor muscles. Methods: Thirty-one T1D patients (T1D), 22 T1D patients with DPN (DPN) and 23 matched healthy control participants (C) were enrolled. Maximal voluntary contraction (MVC) and endurance time at an intensity level of 50% of the MVC were assessed at the knee extensor muscles with an isometric dynamometer. Clinical characteristics of diabetic patients were assessed by considering a wide range of vascular and neurological parameters. Results: DPN group had lower knee extensor muscles strength than T1D (−19%) and the C group (−37.5%). T1D group was 22% weaker when compared to the C group. Lower body muscle fatigability of DPN group was 22 and 45.5% higher than T1D and C group, respectively. T1D group possessed a higher fatigability (29.4%) compared to C group. A correlation was found between motor and sensory nerve conduction velocity and muscle strength and fatigability. Conclusions: Patients with T1D are characterised by both a higher fatigability and a lower muscle strength, which are aggravated by DPN. Our data suggest that factors other than nervous damage play a role in the pathogenesis of such defect

    Muscle fatigability in type 2 diabetes

    No full text
    Background Patients with type 2 diabetes (T2D) may be subject to premature muscle fatigue. However, the effect of diabetes on muscle fatigability has not yet been thoroughly examined. The purpose of this study was to investigate the effect of T2D on muscle fatigability at the upper and lower body. Methods Thirty-three T2D patients (18 men and 15 women; mean age, 59.3 +/- 5.3 years) and 34 matched healthy control participants (17 men and 17 women; mean age, 60.1 +/- 6.1 years) were recruited. Clinical characteristics of diabetic patients were assessed by considering a wide range of vascular and neurological parameters in order to exclude the presence of micro-and macrovascular complications. Gender-specific muscle function was evaluated measuring the maximal voluntary isometric contraction (MVIC), and the endurance time at 50% of the MVIC at the shoulder and at the knee extensor muscles. Results Muscle strength in the upper body was similar among groups, whereas in the lower body, it was significantly reduced in T2D men (-16%) and women (-22%) compared with the controls. Additionally, the endurance time in both upper and lower body was significantly lower in T2D men (-18% and -29%) and women (-19% and -25%, respectively) than controls. Conclusions Besides the reduction in strength, muscle dysfunction in T2D is characterized by a higher fatigability that affects both upper and lower body muscles. This effect is independent to the presence of diabetic complications and may represent a more sensitive marker of muscular dysfunction than muscle strength
    corecore