8 research outputs found

    The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics From 10-100 AU

    Full text link
    We present a statistical analysis of the first 300 stars observed by the Gemini Planet Imager Exoplanet Survey (GPIES). This subsample includes six detected planets and three brown dwarfs; from these detections and our contrast curves we infer the underlying distributions of substellar companions with respect to their mass, semi-major axis, and host stellar mass. We uncover a strong correlation between planet occurrence rate and host star mass, with stars M >> 1.5 M⊙M_\odot more likely to host planets with masses between 2-13 MJup_{\rm Jup} and semi-major axes of 3-100 au at 99.92% confidence. We fit a double power-law model in planet mass (m) and semi-major axis (a) for planet populations around high-mass stars (M >> 1.5M⊙_\odot) of the form d2Ndmda∝mαaÎČ\frac{d^2 N}{dm da} \propto m^\alpha a^\beta, finding α\alpha = -2.4 ±\pm 0.8 and ÎČ\beta = -2.0 ±\pm 0.5, and an integrated occurrence rate of 9−4+59^{+5}_{-4}% between 5-13 MJup_{\rm Jup} and 10-100 au. A significantly lower occurrence rate is obtained for brown dwarfs around all stars, with 0.8−0.5+0.8^{+0.8}_{-0.5}% of stars hosting a brown dwarf companion between 13-80 MJup_{\rm Jup} and 10-100 au. Brown dwarfs also appear to be distributed differently in mass and semi-major axis compared to giant planets; whereas giant planets follow a bottom-heavy mass distribution and favor smaller semi-major axes, brown dwarfs exhibit just the opposite behaviors. Comparing to studies of short-period giant planets from the RV method, our results are consistent with a peak in occurrence of giant planets between ~1-10 au. We discuss how these trends, including the preference of giant planets for high-mass host stars, point to formation of giant planets by core/pebble accretion, and formation of brown dwarfs by gravitational instability.Comment: 52 pages, 18 figures. AJ in pres

    The Gemini Planet Imager Exoplanet Survey : giant planet and brown dwarf demographics from 10 to 100 au

    Get PDF
    We present a statistical analysis of the first 300 stars observed by the Gemini Planet Imager Exoplanet Survey. This subsample includes six detected planets and three brown dwarfs; from these detections and our contrast curves we infer the underlying distributions of substellar companions with respect to their mass, semimajor axis, and host stellar mass. We uncover a strong correlation between planet occurrence rate and host star mass, with stars M* > 1.5 M⊙ more likely to host planets with masses between 2 and 13MJup and semimajor axes of 3–100 au at 99.92% confidence. We fit a double power-law model in planet mass (m) and semimajor axis (a) for planet populations around high-mass stars (M* > 1.5 M⊙) of the form d2N/(dm da) ∝ mα aÎČ, finding α = −2.4 ± 0.8 and ÎČ = −2.0 ± 0.5, and an integrated occurrence rate of 9+5-4% between 5–13MJup and 10–100 au. A significantly lower occurrence rate is obtained for brown dwarfs around all stars, with 0.8+0.8-0.5% of stars hosting a brown dwarf companion between 13–80MJup and 10–100 au. Brown dwarfs also appear to be distributed differently in mass and semimajor axis compared to giant planets; whereas giant planets follow a bottom-heavy mass distribution and favor smaller semimajor axes, brown dwarfs exhibit just the opposite behaviors. Comparing to studies of short-period giant planets from the radial velocity method, our results are consistent with a peak in occurrence of giant planets between ∌1 and 10 au. We discuss how these trends, including the preference of giant planets for high-mass host stars, point to formation of giant planets by core/pebble accretion, and formation of brown dwarfs by gravitational instability.Peer reviewe

    Rethinking the Boundaries of Intimacy at the End of the Century: The Role of Victim-Defendant Relationship in Criminal Justice Decisionmaking Over Time

    No full text
    corecore