280 research outputs found

    Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer

    Get PDF
    In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the pn junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it. © 2012 Baek et al.1

    Visible emission from Ce-doped ZnO nanorods grown by hydrothermal method without a post thermal annealing process

    Get PDF
    Visible light-emitting Ce-doped ZnO nanorods [NRs] without a post thermal annealing process were grown by hydrothermal method on a Si (100) substrate at a low temperature of 90°C. The structural investigations of Ce-doped ZnO NRs showed that the Ce3+ ions were successfully incorporated into the ZnO lattice sites without forming unwanted Ce-related compounds or precipitates. The optical investigation by photoluminescence spectra shows that the doped Ce3+ ions in the ZnO NRs act as an efficient luminescence center at 540 nm which corresponds to the optical transition of 5d → 4f orbitals in the Ce3+ ions. The photoluminescence intensity of the Ce-doped ZnO NRs increased with the increasing content of the Ce-doping agent because the energy transfer of the excited electrons in ZnO to the Ce3+ ions would be enhanced by increased Ce3+ ions

    Autonomous control of terminal erythropoiesis via physical interactions among erythroid cells

    Get PDF
    AbstractIn vitro erythropoiesis has been studied extensively for its application in the manufacture of transfusable erythrocytes. Unfortunately, culture conditions have not been as effective as in vivo growth conditions, where bone marrow macrophages are known to be a key regulator of erythropoiesis. This study focused on the fact that some erythroblasts are detached from macrophages and only contact other erythroblasts. We hypothesized that additional factors regulate erythroblasts, likely through either physical contact or secreted factors. To further elucidate these critical factors, human erythroblasts derived from cord blood were cultured at high density to mimic marrow conditions. This growth condition resulted in a significantly increased erythroid enucleation rate and viability. We found several novel contact-related signals in erythroblasts: intercellular adhesion molecule-4 (ICAM-4) and deleted in liver cancer-1 (DLC-1). DLC-1, a Rho-GTPase-activating protein, has not previously been reported in erythroid cells, but its interaction with ICAM-4 was demonstrated here. We further confirmed the presence of a secreted form of human ICAM-4 for the first time. When soluble ICAM-4 was added to media, cell viability and enucleation increased with decreased nuclear dysplasia, suggesting that ICAM-4 is a key factor in contact between cells. These results highlight potential new mechanisms for autonomous control of erythropoiesis. The application of these procedures to erythrocyte manufacturing could enhance in vitro erythrocyte production for clinical use

    Compressive Behavior and Mechanical Characteristics and Their Application to Stress-Strain Relationship of Steel Fiber-Reinforced Reactive Powder Concrete

    Get PDF
    Although mechanical properties of concrete under uniaxial compression are important to design concrete structure, current design codes or other empirical equations have clear limitation on the prediction of mechanical properties. Various types of fiber-reinforced reactive powder concrete matrix were tested for making more usable and accurate estimation equations for mechanical properties for ultra high strength concrete. Investigated matrix has compressive strength ranged from 30 MPa to 200 MPa. Ultra high strength concrete was made by means of reactive powder concrete. Preventing brittle failure of this type of matrix, steel fibers were used. The volume fraction of steel fiber ranged from 0 to 2%. From the test results, steel fibers significantly increase the ductility, strength and stiffness of ultra high strength matrix. They are quantified with previously conducted researches about material properties of concrete under uniaxial loading. Applicability of estimation equations for mechanical properties of concrete was evaluated with test results of this study. From the evaluation, regression analysis was carried out, and new estimation equations were proposed. And these proposed equations were applied into stress-strain relation which was developed by previous research. Ascending part, which was affected by proposed equations of this study directly, well fitted into experimental results

    Tropical cyclone intensity estimation through convolutional neural network transfer learning using two geostationary satellite datasets

    Get PDF
    Accurate prediction and monitoring of tropical cyclone (TC) intensity are crucial for saving lives, mitigating damages, and improving disaster response measures. In this study, we used a convolutional neural network (CNN) model to estimate TC intensity in the western North Pacific using Geo-KOMPSAT-2A (GK2A) satellite data. Given that the GK2A data cover only the period since 2019, we applied transfer learning to the model using information learned from previous Communication, Ocean, and Meteorological Satellite (COMS) data, which cover a considerably longer period (2011–2019). Transfer learning is a powerful technique that can improve the performance of a model even if the target task is based on a small amount of data. Experiments with various transfer learning methods using the GK2A and COMS data showed that the frozen–fine-tuning method had the best performance due to the high similarity between the two datasets. The test results for 2021 showed that employing transfer learning led to a 20% reduction in the root mean square error (RMSE) compared to models using only GK2A data. For the operational model, which additionally used TC images and intensities from 6 h earlier, transfer learning reduced the RMSE by 5.5%. These results suggest that transfer learning may represent a new breakthrough in geostationary satellite image–based TC intensity estimation, for which continuous long-term data are not always available

    A Case of Successful Colonoscopic Treatment of Acute Appendiceal Bleeding by Endoclips

    Get PDF
    Lower gastrointestinal bleeding is a common disease among elderly patients. The common sources of lower gastrointestinal bleeding include vascular disease, Crohn's disease, neoplasm, inflammatory bowel disease, hemorrhoid, and ischemic colitis. However, bleeding from the appendix has been reported very rarely in patients with lower gastrointestinal tract bleeding. In general, after a colonoscopic diagnosis of appendiceal bleeding, a laparoscopic or surgical appendectomy would be recommended. We report a case of successful colonoscopic treatment of appendiceal bleeding without complications by endoclips. This report suggests that colonoscopic clipping is a safe and effective means to treat bleeding from appendiceal lesions. Further study is needed to evaluate procedure-related complications and to confirm the procedure's safety and efficacy

    Delayed Treatment of Zygomatic Tetrapod Fracture

    Get PDF
    Since maxillofacial injury is frequently accompanied by other diseases, its evaluation and treatment are open delayed. When the evaluation is delayed, the surgical treatment can be difficult or impossible. A 21-yr-old man presented with right facial swelling and deformity after injury. We planned immediate surgical repair for his right tetrapod fracture, but the operation was delayed for two months due to severe hyperthyroidism. During the operation, we reducted and fixed the deviated bone after refracture of the zygomatic arch with an osteotome to achieve mobility. The facial deformity and difficulty in mouth opening were improved after the operation. Even in the presence of accompanying fractures, early evaluation and proper management can prevent complications and achieve acceptable cosmetic outcomes in maxillofacial trauma patients. In patients with malunion of fracture sites, fixation after refracture using an osteotome can be a good treatment option for obtaining good mobility

    Duodenal Mucosa-Associated Lymphoid Tissue Lymphoma: A Case Report

    Get PDF
    Primary duodenal mucosa associated lymphoid tissue (MALT) lymphoma is very rare, and little is known about its clinical course or effective treatment. We describe a case of primary duodenal MALT lymphoma that was resistant to Helicobacter pylori (H. pylori) eradication and regressed after chemotherapy with cyclophosphamide, vincristine, and prednisolone (CVP). A 71-year-old woman was referred to our department because of epigastric pain and dyspepsia. Gastroduodenoscopy revealed an irregular mucosal nodular lesion with ulceration extending from the bulb to the second portion of the duodenum. Histopathological examination of a biopsy specimen disclosed low-grade MALT lymphoma composed of atypical lymphoid cells with lymphoepithelial lesion. Abdominal CT scans revealed 0.5 to 1.5 cm lymph nodes in the peritoneal cavity, suggestive of lymph node metastasis. We successfully eradicated H. pylori but did not see signs of remission. We administered systemic CVP chemotherapy every 3 weeks. After 6 courses of CVP, the patient achieved complete remission and was followed up without recurrence for about a year

    Energy minimization of carbon capture and storage by means of a novel process configuration

    Get PDF
    Carbon capture and storage is considered a key technology for decarbonizing the heat and power industries and achieving net zero emission targets. However, the significant energy requirements of the process as currently utilized hinders its widespread implementation. This work presents a novel process configuration by which the energy expenditures of carbon capture and storage can be minimized. This configuration is intended to enhance heat integration during the capture process through an innovative combination of three stripper modifications, namely lean vapor compression, a rich solvent split with vapor heat recovery and reboiler condensate heat recovery using a stripper inter-heater in a single flow-sheet. For carbon dioxide compression, a novel pressurization strategy involving carbon dioxide multi-stage compressors, a heat pump system and a supercritical carbon dioxide power cycle was designed and evaluated. The heat pump was used for carbon dioxide liquefaction while the supercritical carbon dioxide power cycle was employed to recover the intercooling heat. Through a comprehensive parametric investigation of the proposed configuration, the optimum value of the key operating parameters i.e., the split fraction, flash pressure, stripper inter-heater location, stripper inter-heater solvent flowrate, carbon dioxide liquefaction pressure and supercritical carbon dioxide cycle turbine pressure ratio were estimated. The performance of the proposed design at the optimized condition was quantified in terms of the reboiler heat duty, the carbon dioxide pressurization power and the equivalent work and compared to a baseline case post-combustion carbon capture and storage process. The proposed case reduced the reboiler heat duty from 3.36 GJ/TonneCO2 to 2.65 GJ/TonneCO2 and the electric power required for carbon dioxide compression from 16,691 kW to 14,708 kW. The results demonstrate that the new design can significantly reduce the reboiler duty, compression power and equivalent work by 21.1%, 11.88%, and 15.8%, respectively

    Comparative Evaluation of Nanofibrous Scaffolding for Bone Regeneration in Critical-Size Calvarial Defects

    Full text link
    In a previous study we found that nanofibrous poly(l-lactic acid) (PLLA) scaffolds mimicking collagen fibers in size were superior to solid-walled scaffolds in promoting osteoblast differentiation and bone formation in vitro. In this study we used an in vivo model to confirm the biological properties of nanofibrous PLLA scaffolds and to evaluate how effectively they support bone regeneration against solid-walled scaffolds. The scaffolds were implanted in critical-size defects made on rat calvarial bones. Compared with solid-walled scaffolds, nanofibrous scaffolds supported substantially more new bone tissue formation, which was confirmed by micro-computed tomography measurement and von Kossa staining. Goldner's trichrome staining showed abundant collagen deposition in nanofibrous scaffolds but not in the control solid-walled scaffolds. The cells in these scaffolds were immuno-stained strongly for Runx2 and bone sialoprotein (BSP). In contrast, solid-walled scaffolds implanted in the defects were stained weakly with trichrome, Runx2, and BSP. These in vivo results demonstrate that nanofibrous architecture enhances osteoblast differentiation and bone formation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78127/1/ten.tea.2008.0433.pd
    corecore