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Accurate prediction and monitoring of tropical cyclone (TC) intensity are crucial
for saving lives, mitigating damages, and improving disaster response measures.
In this study, we used a convolutional neural network (CNN)model to estimate TC
intensity in the western North Pacific using Geo-KOMPSAT-2A (GK2A) satellite
data. Given that the GK2A data cover only the period since 2019, we applied
transfer learning to the model using information learned from previous
Communication, Ocean, and Meteorological Satellite (COMS) data, which
cover a considerably longer period (2011–2019). Transfer learning is a
powerful technique that can improve the performance of a model even if the
target task is based on a small amount of data. Experiments with various transfer
learning methods using the GK2A and COMS data showed that the frozen–fine-
tuning method had the best performance due to the high similarity between the
two datasets. The test results for 2021 showed that employing transfer learning
led to a 20% reduction in the rootmean square error (RMSE) compared tomodels
using only GK2A data. For the operational model, which additionally used TC
images and intensities from 6 h earlier, transfer learning reduced the RMSE by
5.5%. These results suggest that transfer learning may represent a new
breakthrough in geostationary satellite image–based TC intensity estimation,
for which continuous long-term data are not always available.
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1 Introduction

Tropical cyclones (TCs), some of the most powerful and destructive natural
phenomena, result in a significant number of fatalities and have adverse social and
economic effects. To minimize the damage that they cause, it is necessary to accurately
analyze and predict their intensity (maximum sustained wind speed). Because obtaining
observational data over the sea is arduous, satellite image data are important for estimating
TC intensity. The fundamental concept behind using satellite images for this purpose is that
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TC intensity is closely related to the cloud patterns in the images
(Chen et al., 2018; Lee et al., 2021; Kim et al., 2022). A widely used
method for applying this idea is the Dvorak technique, which
estimates TC intensity based on the manual recognition of cloud
patterns observed in geostationary satellite infrared (IR) imagery
(Dvorak, 1975; Dvorak, 1984). Several upgraded versions of this
technique have been proposed, including the digital Dvorakmethod,
the objective Dvorak technique (ODT), and the advanced ODT.
These upgraded techniques have reduced the uncertainty and
variability of TC intensity estimations compared to the
traditional Dvorak technique (Tan et al., 2022).

One of the reasons for the success of the Dvorak technique is
that IR brightness temperature can be used as an indicator of
important structural properties of a TC. Since the development
of the Dvorak technique, studies have estimated TC intensity using
parameters calculated based on IR brightness temperature. For
example, the deviation angle variance technique estimates TC
intensity by quantifying TCs’ axisymmetry by calculating the
slope of the IR brightness temperature (Pineros et al., 2008;
Ritchie et al., 2014). Another study (Sanabia et al., 2014)
estimated TC intensity by analyzing the radial profile of the IR
brightness temperature. Other studies have used traditional machine
learning for TC intensity estimations (Piñeros et al., 2011; Liu et al.,
2015; Zhao et al., 2016).

A convolutional neural network (CNN), an artificial intelligence
technique, is similar to the Dvorak technique in that it identifies key
patterns in images. Many researchers have proposed models based
on deep CNNs to estimate TC intensity and demonstrated that the
feature maps of CNNs show the key patterns of TCs (the distinct
eyes of TCs, central dense overcast, and upper curvature of TC
structures) well (Pradhan et al., 2018; Chen and Yu, 2021; Wang
et al., 2022). The data used to train such models are either single-
channel (Chen et al., 2019b; Chen et al., 2020; Tian et al., 2020;
Zhang et al., 2021) or multi-channel satellite images (Pradhan et al.,
2018; Lee et al., 2019a; Jiang and Tao, 2022; Tan et al., 2022; Tian
et al., 2022; Zhang et al., 2022). Lee et al. (2019a) showed that using
multichannel images achieved better performance (by ~35%) than
using single-channel images. Recently, substantial research has been
conducted to improve CNN algorithms. Tan et al. (2022) embedded
both residual learning and attentionmechanisms in a CNNmodel to
optimize its structure and improve its feature extraction ability.
Zhang et al. (2022) devised a spatiotemporal encoding module
(called STE-TC) and DenseConvMixer to improve the estimation
performance of CNN models.

Data generated by Korea’s first geostationary satellite, the
Communication, Ocean, and Meteorological Satellite (COMS),
has been used in various research (Baek and Choi, 2012; Cho
and Suh, 2013; Choi et al., 2014; Baik and Choi, 2015; Lee et al.,
2019b; Yeom et al., 2019), including studies on TC intensity and size
(Kwon, 2012; Lee and Kwon, 2015; Lee et al., 2019a; Lee et al., 2020;
Baek et al., 2022). COMS was launched in 2010 and provided data
for about 9 years, from April 2011 to March 2020, consisting of one
visible channel and four IR channels. Its successor, Geo-KOMPSAT-
2A (GK2A), launched in December 2018, has been collecting data
since July 2019. GK2A currently has about 4 years’worth of data and
consists of four visible channels, two near-IR channels, and 10 IR
channels. Although GK2A has higher spatial and temporal
resolution than COMS, the data that it has accumulated thus far

are not adequate for estimating TC intensity using these data alone.
Therefore, in this study, we employed transfer learning techniques to
use both COMS and GK2A data.

Transfer learning is a machine learning technique in which a
learning model developed for a first learning task is reused as the
starting point for another learning model to perform a second task
(Taherkhani et al., 2020). Due to the difficulty of achieving high
accuracy in computer vision and other domains when using finite
training datasets, deep learning models often require vast datasets
(Cao et al., 2016; Gorban et al., 2020; Li et al., 2020). Transfer
learning offers a viable solution to this issue by transferring
knowledge from the source domain to the target domain and
enhancing the accuracy of deep learning models (Pan et al., 2011;
Yang et al., 2017; Liu et al., 2018; Jiang et al., 2019). Transfer learning
techniques can be used to expedite training, improve generalization,
and compensate for data shortages (Pan and Yang, 2010; Deo et al.,
2017). Combinido et al. (2018) used CNN transfer learning to
estimate TC intensity solely based on grayscale IR images of TCs.
Using the Visual Geometry Group 19-layer (VGG19) model to
estimate TC intensity, they found that retraining only the last
convolutional layer on TC images yielded modest performance.
Pang et al. (2021) proposed a new detection framework for TCs
(NDFTC) based on meteorological satellite images by combining a
deep convolutional generative adversarial network (DCGAN) and
the You Only Look Once (YOLO) v3 model through deep transfer
learning. Such a model achieved better stability and accuracy than
the model without transfer learning. Transfer learning has also been
used in the fields of agriculture, industry, medicine, and natural
science, showing improved performance over models without it
(Deepak and Ameer, 2019; Ham et al., 2019; Imoto et al., 2019;
Rahman et al., 2020; Aslan et al., 2021; Hassan et al., 2021).

In this study, we applied various transfer learning techniques to four
COMS and GK2A IR channels to identify the optimal technique for
both datasets and investigate its TC intensity estimation performance.
Since the technique to be chosen depends on the nature of the data used,
we conducted sensitivity experiments on three techniques: frozen, fine-
tuning, and frozen–fine-tuning. This is the first study to use transfer
learning techniques to estimate TC intensity using the COMS and
GK2A datasets. We applied the selected techniques to (i) a model that
estimates TC intensity using only current satellite images and (ii) an
operational model that aims to estimate TC intensity in real time using
all available data, including satellite images and TC intensity
information from 6 h earlier in addition to current satellite images.
We developed the latter based on the fact that the Dvorak method and
TC prediction centers use all available past TC information to predict
the current TC intensity.

The rest of this paper is organized as follows. Section 2 provides
information of the dataset. Section 3 describes the method. Section 4
discusses the results of the model. Section 5 presents a discussion
and conclusion.

2 Data

2.1 Best-track data

In this study, we used the TC intensity provided by TC best
tracks as label data. Since the model that we aimed to develop was
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intended to estimate TC intensity using best-track data from the
Korea Meteorological Administration (KMA), we tried to use only
these data for TC intensity. However, KMA best-track data are not
available for the period before 2015. Therefore, we also used best-
track data from the Regional Specialized Meteorological Center
Tokyo (RSMC Tokyo), which, like the KMA, uses 10-min
average maximum sustained winds. To ensure data uniformity,
we used RSMC Tokyo best-track data for COMS and KMA best-
track data for GK2A. It should be noted that the RSMC Tokyo best-
track records a maximum sustained wind speed of zero for tropical
depressions with intensities below 35 knots (Huang et al., 2021),
while KMA best-track data provide specific values below 35 knots.
For consistency, we replaced the zero values in the RSMC Tokyo
data with the minimum value (22 knots) of the KMA data for
tropical depressions. Label data on TC intensity from 6 h earlier are
not available for the first occurrence of a TC. For these cases, we used
the initial intensity value of a TC as its intensity 6 h previously.

2.2 Geostationary meteorological satellite
sensor data

The COMS meteorological imager (MI) consisted of sensor,
power, and electronic modules and included five central wavelength
channels: visible (0.67 μm), shortwave IR (SWIR, 3.7 μm), water
vapor (WV, 6.7 μm), and two IR channels (IR1, 10.8 μm; IR2,
12.0 μm). We used COMS extended Northern Hemisphere area
images (see Figure 1A), which have a 15-min temporal resolution.
The GK2A satellite has an advanced MI sensor, four visible
reflectance wavelengths (0.47, 0.51, 0.64, and 0.85 μm), and two
near-IR channels (1.3 μm and 1.6 μm). Its 10 IR channels are created

by splitting the center wavelength (3.8–13.3 μm) into ten. GK2A
produces full-disk images with a temporal resolution of 10 min (see
Figure 1A). For consistency, we used only 1-h-interval imagery from
both GK2A and COMS, extracting only the TC areas from the
original images using the TCs’ center positions in the best-track data
(see Figure 1B). The satellite channels used in this study are
summarized in Table 1.

The COMS data cover the period from April 2011 to June 2019,
while the GK2A data used in this study cover the period from July
2019 to December 2021. We considered only TCs occurring in the
western North Pacific during these periods. To prevent data leakage,
different training and test datasets must be used (Kaufman et al.,
2012). Accordingly, for the pre-trained model, we used the COMS
data from April 2011 to December 2016 and from January 2017 to
June 2019 as training and validation datasets, respectively, while for
transfer learning, we used the GK2A 2019, 2020, and 2021 data as
training, validation, and test datasets, respectively.

3 Materials and methods

3.1 Data preprocessing

Class imbalance, a situation in which one class has a significantly
smaller volume of data than another, is considered one of the most
formidable challenges in machine learning (Taherkhani et al., 2020).
Buda et al. (2018) showed that data imbalance affected the
performance of CNNs and used various data-based methods,
such as oversampling, to tackle this problem. In this study, to
balance the data, we divided the data into 10-knot intervals and
ensured that the percentage of each bin is no more than 25% of the

FIGURE 1
Example of extracting TC images fromoriginal satellite images to be used formodel development. In (A), the black box is GK2A’s full disk area, the red
box is COMS’s Northern Hemisphere area, and the blue box is the extracted TC area. In (B,C), the dashed black boxes represent the final images used for
training, and the numbers at the top of the panels indicate the angles of rotation to the left. This image was taken at 11:00 UTC on 10 October 2019, using
the GK2A IR105 channel.
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TABLE 1 Summary of the channels, center wavelengths, wavelength ranges, and spatial resolutions of the COMS and GK2A satellite imagery used in this
study. The columns are arranged by COMS (GK2A) order.

Channel name Center wavelength (μm) Wavelength range (μm) Spatial resolution (km)

SWIR (SW038) 3.7 (3.8) 3.5-4.0 (3.74-3.96) 4 (2)

WV (WV069) 6.7 (6.9) 6.5-7.0 (6.89-7.01) 4 (2)

IR1 (IR105) 10.8 (10.5) 10.3-11.3 (10.25-10.61) 4 (2)

IR2 (IR123) 12.0 (12.3) 11.5-12.5 (12.15-12.45) 4 (2)

TABLE 2Numbers of COMS andGK2A images used to develop themodel. The numbers in parentheses represent operationalmodels using information from
6 h earlier.

Original COMS Balanced COMS Original GK2A Balanced GK2A

Training 26,525 127,032 (47,419) 3,461 12,851

Validation 9,778 44,320 (14,973) 2,394 8,510

Test 2,926 2,926

Total 36,303 171,352 (62,392) 8,781 24,287

TABLE 3 Architectures of the CB2, CB3, CB4, andCB4models, consisting of two, three, four, and five convolutional blocks (CBs), respectively. CL, PL, and FC
represent the convolutional layer, the pooling layer, and the fully connected layer, respectively.

CB2 model CB3 model CB4 model CB5 model

Input 101 × 101 × 4 101 × 101 × 4 101 × 101 × 4 101 × 101 × 4

1st CL 101 × 101 × 32 101 × 101 × 32 101 × 101 × 32 101 × 101 × 32

1st PL 50 × 50 × 32 50 × 50 × 32 50 × 50 × 32 50 × 50 × 32

2nd CL 50 × 50 × 64 50 × 50 × 64 50 × 50 × 64 50 × 50 × 64

2nd PL 16 × 16 × 64 16 × 16 × 64 16 × 16 × 64 16 × 16 × 64

3rd CL 16 × 16 × 128 16 × 16 × 128 16 × 16 × 128

3rd PL 16 × 16 × 128 16 × 16 × 128 16 × 16 × 128

4th CL 16 × 16 × 256 16 × 16 × 256

4th PL 16 × 16 × 256 16 × 16 × 256

5th CL 16 × 16 × 512

5th PL 16 × 16 × 512

1st FC 16,384 32,768 65,536 131,072

2nd FC 64 128 256 512

3rd FC 32 64 128 256

4th FC 16 32 64 128

5th FC 8 16 32 64

6th FC 4 8 16 32

7th FC 1 4 8 16

8th FC 1 4 8

9th FC 1 4

10th FC 1
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total data. In other words, if a particular bin is more than 25% of the
total data, we randomly removed the excess. We also applied an
oversampling method that increases the number of samples in a bin
by rotating all images, ensuring that the number of all bins is close to
twice the size of the largest bin. Bins with fewer data require more
rotations at smaller angles. The smallest angle of rotation used is 1°.

To investigate the impact of rotation-based data
augmentation on model performance, we compare the root
mean square error (RMSE) for models trained on the original
COMS data and augmented data, respectively, for GK2A
validation data. The results showed that the model using the
augmented COMS data had the RMSE of 13.67 knots, which was
a 37.64% reduction compared to the model (21.92 knots) using
the original data alone.

Because rotating TC images resulted in white space, as shown in
Figure 1C, we needed to crop them to remove the white space. To
crop to 303 × 303 pixels (black dashed line in Figures 1B, C), we
needed to extract TCs with a minimum size of 429 × 429 pixels (blue
line in Figure 1A) from the original satellite images. Since TC images
are provided as digital counts, we converted them to brightness
temperature using the brightness correction table provided by the

National Meteorological Satellite Center.1 Due to the different
spatial resolutions of the two satellite datasets, we interpolated
the GK2A data to make them equal to the COMS resolution.

After data balancing, the TC images become 303 × 303 pixels
(i.e., 1,212 × 1,212 km), and then the image size becomes 101 ×
101 pixels by upscaling with bilinear interpolation for computational
efficiency. We combined the four infrared channels into one and
normalized them using the maximum and minimum values within
them. This method is helpful for CNN spatial pattern learning
because it can capture the relative pattern distribution between
channels. The data balancing, upscaling, and normalizing methods
followed Lee et al. (2019a). We also normalized the label data from
0 to 1 (Baek et al., 2022) by dividing it by the maximum TC intensity
(125 knots) among TCs that occurred from 2011 to 2020 to improve
model convergence and generalization. To check that this maximum
value is a reliable indicator even for future TCs with extreme
intensities, we conducted sensitivity experiments in which we

FIGURE 2
Architectures of (A) the CNN model using only current TC images and (B) the operational CNN model using TC images and intensity information
from 6 h earlier as additional inputs. In (A), the current satellite images of four channels are inputted as a single input layer. In (B), the current four-channel
satellite images and those from 6h earlier, along with TC intensity information from 6h earlier, are inputted through three separate input layers. The
meanings of the colors in the layers are shown in the top right corner of the figure.

1 Online. [Available]: http://nmsc.kma.go.kr/html/homepage/ko/main.do
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removed TC data with intensities above 120 knots from the train
data and then estimated intensities of the removed TC data using
different maximums (105, 119, 145 knots). The results show that the

RMSEs for each experiment are 22.4, 15.44, and 24.13, respectively.
This suggests that the choice of maximum value is sensitive to the
performance of TC intensity estimation and the current method of
using the true maximum in the data is the best way to estimate future
extreme TCs.

Table 2 shows the numbers of COMS and GK2A images
before and after data balancing. For the model to estimate TC
intensity by learning additional data from 6 h earlier, the input
data needed to include satellite imagery and TC intensity from
6 h earlier in addition to current satellite imagery. Due to
computer memory issues, we reduced the augmentation of
COMS data (parentheses in Table 2), as it would have
otherwise doubled the amount of data compared to using
current satellite data alone.

3.2 CNN model

CNNs are some of the most frequently used deep learning
algorithms for many computer vision problems, such as digit
identification and object recognition. A CNN consists of
numerous processing layers to extract “features,” or
increasingly abstract representations of input data, and fit
them to target categories for classification tasks or to a target
value for regression tasks (Chen et al., 2019a). The main
advantage of CNNs is their weight-sharing feature, which
reduces the number of trainable network parameters and
subsequently aids in improving generalization and preventing
overfitting (Alzubaidi et al., 2021).

TABLE 4 Summary of the sensitivity experiments conducted in this study. For each experiment, themodels’ names and numbers of CB layers and total layers
are shown separately for the original models and the operational models using TC information from 6 h earlier (the latter are indicated in parentheses). The
experimental names of the operational models are not indicated, but they can be recreated by adding “-6h” to the end of the model names in the first
column. For example, TLFFT2 becomes TLFFT2-6h in the operational model experiment.

Model name Transfer learning method Number of CBs Total layer

TLFFT2

Frozen-fine-tuning

2 (4) 15 (30)

TLFFT3 3 (6) 19 (38)

TLFFT4 4 (8) 23 (46)

TLFFT5 5 (10) 27 (54)

TLF2

Frozen

2 (4) 15 (30)

TLF3 3 (6) 19 (38)

TLF4 4 (8) 23 (46)

TLF5 5 (10) 27 (54)

TLFT2

Fine-tuning

2 (4) 15 (30)

TLFT3 3 (6) 19 (38)

TLFT4 4 (8) 23 (46)

TLFT5 5 (10) 27 (54)

GO2

Using only GK2A without transfer learning

2 (4) 15 (30)

GO3 3 (6) 19 (38)

GO4 4 (8) 23 (46)

GO5 5 (10) 27 (54)

TABLE 5 Optimal kernel size, dropout rate, and learning rate used for the
best-performing models with (TFFFT3 and TLFFT3-6h) and without
(GO3 and GO3-6h) transfer learning. TLFFT3-6h and GO3-6h represent
operational models using TC images and intensities from 6h earlier as
additional inputs. The kernel size is shown for the first, second, and third
convolutional blocks (CBs), and the number after the comma is the kernel
size for the CB using 6 h earlier image as input.

CB Kernel
size

Dropout
rate

Learning
rate

TLFFT3

1st 7

0.75 10–42nd 3

3rd 5

TLFFT3-
6h

1st 3,3

0.25 10–42nd 9,3

3rd 9,3

GO3

1st 5

0.75 10–42nd 7

3rd 5

GO3-6h

1st 3,9

0.75 10–52nd 5,7

3rd 3,9
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The three main components of a CNN are convolutional
layers, pooling layers, and the fully connected layer. Using a
convolutional kernel in the convolutional layer reduces the
number of parameters in the network and obviates the need
to use a one-to-one connection between all pixel units (Hadji
and Wildes, 2018). Pooling layers allow the detection of more
abstract features and spatial contexts across scales and reduce
the computational load and the risk of overfitting by reducing
the number of model parameters (Kattenborn et al., 2021). The
fully connected layers take in the mid- and low-level features
and produce high-level abstraction, which corresponds to the
final layers in a typical neural network (Alzubaidi et al., 2021).

The models for estimating TC intensity consisted of two to five
convolutional blocks (CBs), including convolutional, activation, and
pooling layers. The structure of each model is shown in Table 3.
Sensitivity experiments showed that the optimal number of CBs was
three. Figure 2 shows the structure of a model using only current
satellite images and an operational model that additionally used satellite
images and TC intensity information from 6 h earlier. For the former
model, the input consisted of four-channel images, and the output was
TC intensity. The latter consisted of three input layers (current four-
channel images, images from 6 h earlier, and TC intensity from 6 h
earlier) and one output layer (current TC intensity).

3.3 Transfer learning model and
experimental design

CNNs learn domain-specific features at the top of the network
and general features (such as colors and edges) at the bottom of the
network (Karpathy et al., 2014). When applying transfer learning to
a CNN, the bottom of the pre-trained model is frozen, while the top
is trained in the target task. The layer to be trained with the target
task (target layer) typically uses randomly initialized parameters
(Yosinski et al., 2014). The parameters of the pre-trained model
layers are either fine-tuned or frozen. Fine-tuning updates the
parameters for new tasks, while frozen parameters are not
updated. The choice between fine-tuned and frozen parameters
depends on the size of the dataset and the number of parameters
(Yosinski et al., 2014). If the target dataset is small and the number of
parameters is large, keeping the features frozen is a better choice. On
the other hand, if the target dataset is large or the number of
parameters is small—and, thus, overfitting is not a
concern—performance can be improved by fine-tuning the
parameters for new tasks.

Since effective transfer learning methods differ depending on the
nature of the data, we conducted sensitivity experiments on three
transfer learning methods: fine-tuning, frozen, and frozen–fine-

FIGURE 3
Comparison of the performance of the three transfer learning methods (TLFFT3, frozen–fine-tuning; TLFT3, fine-tuning; and TLF3, frozen) in terms
of (A) correlation coefficients (r), (B)mean absolute error (MAE), (C) root mean square errors (RMSE), and (D) bias. Performance was evaluated based on
the number of frozen (or fine-tuned) layers for models with three CBs. The yellow symbols indicate the best performance in each experiment.
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tuning. In the fine-tuning and frozen methods, the parameters of the
target layer were randomly initialized. In the frozen–fine-tuning
method, the parameters of the pre-trained model were frozen, and
the target layers were fine-tuned. The aim of the latter was to
examine whether it would be helpful to use the parameters of a
model pre-trained with COMS as initial values for the target layer.

We conducted sensitivity experiments to determine the optimal
number of CBs for the three transfer learning methods. The transfer
learning experiments are denoted by the first two letters of the
model’s name (TL), and frozen–fine-tuning, frozen, and fine-tuning
are labeled “FFT,” “F,” and “FT,” respectively. The number of CBs
used in each model is indicated at the end of the model’s name. The
operational models, which additionally used satellite images and TC
intensity information from 6 h ago, are indicated by “-6h” at the end
of each model’s name. GK2A-only experiments without transfer
learning, which were conducted to compare the performance of
models with and without transfer learning, are labeled “GO.”

In the transfer learning experiments, we increased the number of
layers by one to determine up to which layer it was most effective to

keep the parameters of the pre-trained model frozen or fine-tune
them. The sensitivity experiments are summarized in Table 4.

3.4 Hyperparameter tuning

Finding a suitable set of hyperparameters, such as the size and
number of filters in the convolutional layers and the depth of the
CBs, is important because it has a significant impact on the
performance of machine learning algorithms (Li et al., 2018). We
optimized the number of CBs, kernel size, dropout rate, and learning
rate by performing hyperparameter tuning. As the depth of the CBs
increases, the number of hyperparameters and the weights increase,
which can lead to model overfitting, while a shallower depth can lead
to underfitting (Baek et al., 2022). Compared to large filters, small
filters in a model are better able to capture the local features of an
input image, while large filters are better able to extract an input
image’s general pattern. Although a small filter may extract a great
deal of information from the input data, it may be necessary for the

FIGURE 4
Comparison of performance as a function of the number of convolutional blocks (CBs) in terms of (A) correlation coefficients (r), (B)mean absolute
error (MAE), (C) rootmean square errors (RMSE), and (D) bias. Performancewas evaluated based on the number of frozen layers in the frozen–fine-tuning
model. The yellow symbols indicate the best performance in each experiment. CB2, CB3, CB4, and CB5 represent models with two, three, four, and five
CBs and 15, 19, 23, and 27 layers, respectively.

Frontiers in Earth Science frontiersin.org08

Jung et al. 10.3389/feart.2023.1285138

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1285138


model to learn through a deeper convolutional layer, as it slows
down the rate at which the dimensions are reduced (LeCun et al.,
1989; Lee et al., 2019a; Baek et al., 2022). Dropout is a widely used
technique for generalizing a model by randomly dropping neurons
during each training epoch. Adjusting the learning rate values can
reduce loss, improve accuracy, and control the total time required
for network training (Ismail et al., 2019).

All models used in this study have the same range of
hyperparameter tuning. The ranges of the number of CBs, filter
size, learning rate, and dropout rate were [2, 3, 4, 5], [3, 5, 7, 9], [10−3,
10−4, 10−5, 10−6], and [0.25, 0.5, 0.75], respectively. The sensitivity
experiments (see Section 4.1) showed that models with three CBs
performed the best. For this reason, Table 5 shows only the
hyperparameters of these models (i.e., TLFFT3, TLFFT3-6h,
GO3, and GO3-6h). The convolutional layers of all models used
the same padding and ReLU activation function. The adaptive
momentum gradient descent optimizer and the mean squared

error loss function were used for model training and
optimization. The total number of training epochs was 50, and
the number of early stopping epochs was 20, which helped reduce
overfitting. The experiments were conducted using tensorflow as the
deep learning framework.

4 Results

4.1 Sensitivity experiments

In this subsection, we present the results of the sensitivity
experiments conducted to select the optimal transfer learning
method, number of CBs, and number of frozen or fine-tuned
layers. Model performance was evaluated based on the GK2A
validation data using correlation coefficients (r), mean absolute
error (MAE), RMSE, and bias. Among all possible experimental

FIGURE 5
Density scatter plots of TC intensity estimation for GK2A validation (A,C) and test (B,D) data using the TLFFT3 (A,B) and GO3 models (C,D). In each
panel, the x-axis shows the best-track TC intensity, and the y-axis shows the intensity predicted by themodels. The upper left corner of each panel shows
the number of data (Count), correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), and bias.
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combinations, the frozen–fine-tuning model with three CBs and
eight frozen layers (TLFFT3) showed the best performance. As an
example, Figure 3 compares the performance of the three transfer
learning methods (frozen–fine-tuning, fine-tuning, and frozen) as a
function of the number of frozen or fine-tuned layers for models
with three CBs. The frozen–fine-tuning method (black lines)
exhibited the best overall performance and produced the best
results when up to eight layers of the model were frozen (yellow
symbol). The frozen–fine-tuning method relies more heavily on the
parameters of the pre-trained model than the other methods because
it uses them as initial values for all layers. Therefore, this result
suggests that the pre-trained model’s task and the new target task
(i.e., the COMS and GK2A data) were similar.

Figure 3 also shows that TLFFT3 exhibited relatively little variation
in r, MAE, and RMSE according to the number of frozen or fine-tuned
layers compared to the fine-tuning (TLFT3) and frozen (TLF3)models,
suggesting that it had consistently good performance. In the TLFFT3,
TLFT3, and TLF3 experiments, the best performance was achieved
when 8–12 layers were frozen or fine-tuned, suggesting that freezing or
fine-tuning the layers of the pre-trained model up to at least the third
CB (eighth layer) is helpful for TC intensity estimation. In the
TLFT3 experiment, the RMSE tended to increase as the number of
fine-tuned layers increased (10–14 layers). This is likely due to the
limited size of the GK2A dataset used, whichmay result in overfitting if
too many layers of the pre-trained model are fine-tuned.

Figure 4 compares the performance of the best transfer learning
model (i.e., frozen–fine-tuning) as a function of the number of
frozen layers and the number of CBs. Using three CBs (red lines)
achieved the best performance, suggesting that too few CBs can
prevent the network from learning sufficient data, while too many

CBs can lead to overfitting. In all CB sensitivity experiments, the best
performance (yellow symbols) was achieved when freezing layers up
to (and including) the last CB of each model (i.e., the second, third,
fourth, and fifth CBs of the CB2, CB3, CB4, and CB5 models,
respectively), except for bias.

4.2 Effect of using transfer learning

In this subsection, we compare the performance of the best-
performing models with and without transfer learning (TLFFT3 and
GO3, respectively) using GK2A validation and test data (Figure 5).
TLFFT3 consistently outperformed GO3 in all evaluation metrics in
both the validation and test datasets, with its RMSEs being lower by
23.54% and 20.16% than those of GO3 in the validation and test
datasets, respectively.

We evaluated the stability and performance of the two models
(TLFFT3 and GO3) based on the changes in loss and R2 during the
training and validation iterations (Figure 6). Loss measures the
difference between the values predicted by the model and the
actual data, while R2 quantifies how well a regression model fits
the data by indicating the proportion of the dependent variable’s
variance explained by the model’s independent variables. In GO3, as
the epochs increased, the validation loss became considerably greater
than the training loss (solid and dashed red lines in Figure 6A).
Moreover, the training loss of GO3was considerably smaller than that
of TLFFT3, but its validation loss was significantly larger. In contrast,
TLFFT3 showed a small difference between validation and training
losses in all epochs (solid and dashed black lines in Figure 6B), which
did not change considerably as the epochs increased. A similar pattern

FIGURE 6
Comparison between the TLFFT3 andGO3models in terms of (A) loss and (B) R2 for the training and validation data. The black and red lines represent
TLFFT3 and GO3, respectively, and the solid and dashed lines indicate the training and validation data, respectively.
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was observed in R2 (Figure 6B). These results suggest that the
TLFFT3 model was stable and performed well, while the
GO3 model was characterized by overfitting.

A time series comparing the estimates of the two models with the
best-track data for three TC cases also showed that the model with
transfer learning (TLFFT3) outperformed the model without transfer
learning (GO3) (Figure 7). For example, the intensities of In-Fa (2,106)
and Chanthu (2,114) estimated by GO3 were frequently significantly
higher or lower than the best-track values (Figures 7A, B). This seems to
have been the result of overfitting. In contrast, TLFFT3 provided
relatively consistent intensity estimates for both TCs. On the other
hand, both models estimated the intensity of Mindulle (Figure 7C)
more consistently than in the case of the other two TCs, with no
significant difference in performance between them.

4.3 Performance of operational models

For operational models, we compared the performance of the best-
performingmodels with andwithout transfer learning (TLFFT3-6h and
GO3-6h, respectively) to evaluate the impact of transfer learning on TC
intensity estimates (Figure 8). Both operational models showed a

significant performance improvement over the respective original
models (TLFFT3 and GO3), which used only current TC images.
Notably, both models showed r values exceeding 0.98 and MAEs lower
than 3.24 in all training and validation periods, which represent
considerably better performance than that of original models
(compare Figures 5, 8). This suggests that using information from
6 h earlier in operationalmodels is very helpful in estimating current TC
intensity, which tends to vary over time.

A comparison between TLFFT3-6h and GO3-6h showed that
the former outperformed the latter in all evaluation metrics, with
RMSEs lower by 5.49% and 4.5% for the test and validation data,
respectively. This suggests that the transfer learning technique was
still effective in the operational TLFFT3 model (TLFFT3-6h). It
should be noted that the reduction in RMSE through transfer
learning was considerably smaller in the operational model
(5.49%) than in the original model (20.16%) for the test data, but
this difference is attributed to the inherently lower error of the GO3-
6h model itself making further improvement difficult.

In general, validation performance is better than the test as seen in
the most cases in Figure 5. Because the model’s hyperparameters will
have been tuned specifically for the validation dataset. However, Figure 8
shows the opposite results. This is because if there is not enough data for

FIGURE 7
Time series of TC intensity estimated by the TLFFT3 andGO3models, alongwith KMA best-track data for the 2021 TCs (A) In-Fa, (B)Chanthu, and (C)
Mindulle. In each graph, the black line represents the best-track data, the red line indicates the intensity estimated by the TLFFT3model, and the blue line
shows the intensity estimated by the GO3 model. The month and year in which each TC occurred are shown in the upper left corner of each panel. The
x-axis in each plot is marked with lines indicating 12-h intervals, and dates are shown at 00:00 UTC points.

Frontiers in Earth Science frontiersin.org11

Jung et al. 10.3389/feart.2023.1285138

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1285138


testing, there may be bias in the data, which can sometimes lead to test
results performing better than validation. In fact, other studies have also
reported that test results sometimes perform better than validation (Baek
et al., 2022; Tong et al., 2023). Our data was divided by year to avoid data
leakage and, due to the limited number of available data, the sample size
of the test dataset is small (only 1 year). Since characteristics of TCs vary
from year to year, tests using only 1 year’s data may be biased.

5 Discussion and conclusion

GK2A, the successor of COMS (Korea’s first geostationary
satellite), was launched in July 2019 and has therefore not
accumulated sufficient data. To address this problem, we applied the
transfer learning method to models pre-trained on COMS data to
estimate TC intensity. To our knowledge, no other study has applied

transfer learning to TC intensity estimation using these data. To select a
suitable transfer learning method, we evaluated the performance of
several methods based on GK2A validation data. The frozen–fine-
tuning method, which freezes the parameters of the pre-trained model
and fine-tunes the subsequent layers, showed the best performance.
This suggests that using the parameters of the pre-trained model as a
starting point in all layers is advantageous for TC intensity estimation.
The sensitivity experiments conducted to determine the optimal
number of CBs showed that the use of three CBs was the most
appropriate. When tested using 2021 TC data, the TLFFT3 model,
which had both frozen and fine-tuned parameters and three CBs,
yielded an RMSE lower by 20.16% than that of the model using GK2A
data alone (GO3). In the operational model using additional satellite
images and TC intensity information from 6 h earlier, transfer learning
further reduced the RMSE by 5.49%. Our results show that the use of
transfer learning for GK2A and COMS data can enhance TC intensity

FIGURE 8
Density scatter plots of TC intensity estimation for GK2A validation (A, C) and test (B, D) data using the TLFFT3-6h (A, B) andGO3-6hmodels (C, D). In
each panel, the x-axis shows the best-track TC intensity, and the y-axis shows the intensity predicted by the models. The upper left corner of each panel
shows the number of data (Count), correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), and bias.
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estimations based on CNNs. Specifically, the findings suggest that the
frozen–fine-tuning method is the most suitable. However, this
conclusion relies heavily on the similarity between the two datasets
used. To check the similarity of the COMS and GK2A data, we
calculated the r values and mean absolute difference (MAD) of the
brightness temperatures of two datasets for a TC at 08:00 UTC on
2 October 2019 (Figure 9). All data from the four channels (IR1, IR2,
SWIR, and WV) showed high correlations (more than 0.97) between
the two datasets and low MADs (2.95, 3.34, 2.45, and 6.68 K,
respectively), indicating that the two datasets are very similar.

Since the two data sets are very similar, we investigated the
difference in performance when using transfer learning and when
training a model on the combined COMS and GK2A datasets. In
this experiment, we compared the performance using the original data
without data augmentation due to computermemory issues. The results
show that in GK2A validation data, the RMSE for the combined-data
model was 18.86 knots, while for the transfer learning model it was

15.68 knots. The error of the transfer learning model was 16.6% lower
than that of the combined-data model. This indicates that transfer
learning model performs better than the combined-data model.

Although the GK2A and COMS datasets differ in terms of the
sensors, resolutions, and algorithms used, the fact that data from similar
channels exhibit a high degree of similarity is of great importance. This
is because the developed approach can be applied to other satellite data
with similar characteristics, such as Geostationary Operational
Environmental Satellites (GOES), Himawari satellites, and
geostationary meteorological satellites (Meteosat). Transfer learning
is a powerful tool because it leverages information learned from pre-
trained models, which helps conserve computer resources, prevent
overfitting, and overcome data scarcity. Given that currently
operational geostationary satellites have a lifespan of approximately
10 years, transfer learningmay represent a new breakthrough in satellite
utilization research by enabling the use of diverse satellite data to
overcome data scarcity.

FIGURE 9
Scatter plots of brightness temperatures frequency for (A) IR1, (B) IR2, (C) SWIR, and (D)WV channels of COMS and GK2A, including data distribution
information. The units are in Kelvins. Correlation coefficient (r) and mean absolute difference (MAD) are shown in the upper left corner of the figure.
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