10 research outputs found

    Climate Change and Farm Use of Weather Information

    Get PDF
    More rapid than normal global climate change as represented by rising temperatures and more erratic and severe weather events have heightened the interest in how farmers use weather information. The greenhouse influence through driving climate change will likely be affecting agricultural efforts for some years to come. It behooves us to pay attention to this phenomenon, and especially put effort into understanding how farmers will respond to information about climate generally and forecasts in particular. This research is being funded by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration. To address this issue farmers were surveyed in three major agroecological zones representing 1) a western Corn Belt, rainfed corn-soybean regime, 2) a central Great Plains irrigated corn-soybean regime, and 3) a central Great Plains irrigated continuous corn regime. Each of these zones is represented in three counties in eastern Nebraska. To better reflect farmers' weather related needs and issues, focus groups were held in each county to engage farmers in helping the researchers to design the survey instrument. The fact we used focus groups added an intriguing flavor to the study. Between 15-20 farmers in each zone were involved. These farmers were paid 25fora2hoursessionthatculminatedinaprovidedlunch.Eachsessionwasalsovideotaped,providingtheopportunityforallmembersoftheresearchteamtoseetheresultsoftheevent(inthatonly34membersofthelargermultidisciplinaryresearchteamwereallowedtoattendanevent,duetoconcernsoveraffectingfarmerresponses).Thefocuswasonthefarmersreactionstoaseriesofquestionspreparedbeforehandbytheresearchteam,allofwhichstirredlivelydialogueonhowfarmersactuallyuseweatherinformation.Theresultwasasubstantiallyimprovedquestionnaire.Wealsosentdraftsbacktofarmerparticipantsforfinalreviews,andsubsequentadjustmentswerethenmadereflectingthewaytheyusedthewordsandunderstoodthesurveyquestions.Thequalitativedatafromthefocusgroupeventsultimatelyinfluencednotonlythewayquestionswereaskedbutalsohowthemodelingisdone,and,especially,howthemodelresultsareinterpreted.Atotalof2211questionnairesweresent,intwoseparatemailings.Therewasalsoafollowupremindercard.Farmerswereofferedapaymentof25 for a 2-hour session that culminated in a provided lunch. Each session was also videotaped, providing the opportunity for all members of the research team to see the results of the event (in that only 3-4 members of the larger multidisciplinary research team were allowed to attend an event, due to concerns over affecting farmer responses). The focus was on the farmers' reactions to a series of questions prepared beforehand by the research team, all of which stirred lively dialogue on how farmers actually use weather information. The result was a substantially improved questionnaire. We also sent drafts back to farmer participants for final reviews, and subsequent adjustments were then made reflecting the way they used the words and understood the survey questions. The qualitative data from the focus group events ultimately influenced not only the way questions were asked but also how the modeling is done, and, especially, how the model results are interpreted. A total of 2211 questionnaires were sent, in two separate mailings. There was also a follow-up reminder card. Farmers were offered a payment of 25 to return the questionnaire. A total of 28% took the offer and the overall return rate was 33%, with 698 usable questionnaires in the econometric analysis. A distinctive aspect of this study is the fact that the research team involves active participation not only by agricultural economists but also by a psychologist and a social psychologist, as well as two meteorologists, and an agronomist (who is also a GIS specialist). The result is a nontraditional behavioral economics approach that is sensitive to the climate and agronomic realities faced by farmers in these zones. This approach has a unique two-fold feature; first, it puts special attention on underlying motives, and second, asks whether there may be a complex expression of both private (self) and public (other, community) interest in how forecasts influence farm level decisions. Yet, the modeling still reflects standard derived demand theory and the general expectancy-value or subjective utility perspective, i.e. that farmers have beliefs about fact events and values relating to the outcomes from those events, and that the demand for weather information is derived from the value (profit, sense of well-being, risk-reducing value) it produces for them. The beliefs represent probability statements about outcomes and the values represent the utility or profit related transformations of meaning about the farmer perceptions of the outcomes. The econometric analysis uses proxy measures of the expectancy-value as independent measures, along with such variables as financial capability of the farmer as represented in farm sales, to explain in a Tobit kind of framework 1) the probability of applying weather forecast information since it influences farm level decision(s), and 2) the extent to which this forecast information is influencing these decision(s). The set of four Tobit models in Table 1 test the influence of recent past and current experience (RPE), short (STF) and long-term forecasts (LTF) on 1) agronomic (e.g. selecting the crop type, spraying), 2) insurance, and 3) marketing decisions, within recent past experience/short-term and long-term forecasts. To test the models, we created four indices represented in balance (joint and nonseparable ratio of public (other) to private (self) interests); attitude as a construct of personal belief and value system, influence of social norms, household and community members, county extension, etc; farmers' need for internal control over crop production; and farm sales representing financial limitations. Preliminary analyses suggest that all the farm decisions are influenced by weather forecast information at a different intensity (Table 1). The probability of that influence increases with balance, as the farmer puts more effort into pursuing the self over the community interests. Influence of others and social norms intensify the use of weather information in the decisions as well. Those who want more control over the farm are likely to be more influenced by weather forecasts. Finally, influence of weather forecasts becomes greater as gross farm income (sales) increases. Other intriguing interpretations are suggested by the changes in the size of the parameter elasticities and marginal effects3, e.g. the control parameter is substantively smaller in the insurance decision, which suggests farmers see insurance as offsetting the need for more control over their decisions. As another example, the balance in private and public interests is less significant and less a factor in the very personal, private marketing decision in contrast to "how one farms" (which is likely more sensitive to community scrutiny) in the agronomic decisions. The larger paper explores these refinements in greater detail. Table 1. Intensity of Weather Forecast Influence on Farm Decisions. Variables Agronomy (Cur. Rec. Past Exp. & Short term forecasts) decisions Agronomy (Long Term Forecasts) decisions E1 E 2 ME 1 ME 2 E 1 E 2 ME 1 ME 2 Balance -.37b -.37b -1.109b -.012b -.23a -.24a -.637a -.0202a Attitude .62c .62c .495c .0052c .71c .72c .560c .0178c Norms .12c .12c .153c .0016c .09b .09b .102b .0032b PBC .15c .15c .157c .0017c .19c .19c .178c .0056c Farm Sale .07b .07b .086b .0009b .02 .02 .024 .0008 Easting .06b .06b -2.2E-6b -2.3E-8b -.01 -.01 3.7E-7 1.2E-8 Insurance decisions Marketing decisions Balance -.12 -.13 -.247 -.033 -.29a -.29a -.779a -.040a Attitude .93c .98c .674c .089c .58c .59c .486c .025c PBC .07 .07 .048 .006 .13b .13b .119b .006b Farm Sale .18c .19c .164c .022c .20c .20c .238c .012c Notes: Dependent variable is the degree of influence of climate and weather information and forecasts. a p<0.10, b p<0.05, c p<0.001. 3 E1 is the elasticity at the mean that represents the percentage change in the probability that the weather and climate forecast and information influences decisions at all, and; E2 is the elasticity at the mean for those who are being influenced, the percentage change in the degree of influence. ME1 is the effect of the expected value for the weather and climate already influenced farmers; ME2 is the effect of the probability of being influenced by climate and weather information (elasticity of influence).Farm Management,

    Understanding Farmers’ Forecast Use from Their Beliefs, Values, Social Norms, and Perceived Obstacles

    Get PDF
    Although the accuracy of weather and climate forecasts is continuously improving and new information retrieved from climate data is adding to the understanding of climate variation, use of the forecasts and climate information by farmers in farming decisions has changed little. This lack of change may result from knowledge barriers and psychological, social, and economic factors that undermine farmer motivation to use forecasts and climate information. According to the theory of planned behavior (TPB), the motivation to use forecasts may arise from personal attitudes, social norms, and perceived control or ability to use forecasts in specific decisions. These attributes are examined using data from a survey designed around the TPB and conducted among farming communities in the region of eastern Nebraska and the western U.S. Corn Belt. There were three major findings: 1) the utility and value of the forecasts for farming decisions as perceived by farmers are, on average, around 3.0 on a 0–7 scale, indicating much room to improve attitudes toward the forecast value. 2) The use of forecasts by farmers to influence decisions is likely affected by several social groups that can provide “expert viewpoints” on forecast use. 3) A major obstacle, next to forecast accuracy, is the perceived identity and reliability of the forecast makers. Given the rapidly increasing number of forecasts in this growing service business, the ambiguous identity of forecast providers may have left farmers confused and may have prevented them from developing both trust in forecasts and skills to use them. These findings shed light on productive avenues for increasing the influence of forecasts, which may lead to greater farming productivity. In addition, this study establishes a set of reference points that can be used for comparisons with future studies to quantify changes in forecast use and influence

    Climate Change and Farm Use of Weather Information

    Get PDF
    Rapid global climate change as represented by rising temperatures and more erratic and severe weather events has heightened the interest in how farmers use weather information. Due to the food supply being so essential, it behooves us to pay attention to this phenomenon, and especially to put effort into understanding how farmers will respond and adapt to information about climate generally and forecasts in particular. To reduce the negative effects of climate on crop production and enhance field operations, the best weather information needs to be influencing farmer decisions

    Climate Change and Farm Use of Weather Information

    No full text
    More rapid than normal global climate change as represented by rising temperatures and more erratic and severe weather events have heightened the interest in how farmers use weather information. The greenhouse influence through driving climate change will likely be affecting agricultural efforts for some years to come. It behooves us to pay attention to this phenomenon, and especially put effort into understanding how farmers will respond to information about climate generally and forecasts in particular. This research is being funded by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration. To address this issue farmers were surveyed in three major agroecological zones representing 1) a western Corn Belt, rainfed corn-soybean regime, 2) a central Great Plains irrigated corn-soybean regime, and 3) a central Great Plains irrigated continuous corn regime. Each of these zones is represented in three counties in eastern Nebraska. To better reflect farmers' weather related needs and issues, focus groups were held in each county to engage farmers in helping the researchers to design the survey instrument. The fact we used focus groups added an intriguing flavor to the study. Between 15-20 farmers in each zone were involved. These farmers were paid 25fora2hoursessionthatculminatedinaprovidedlunch.Eachsessionwasalsovideotaped,providingtheopportunityforallmembersoftheresearchteamtoseetheresultsoftheevent(inthatonly34membersofthelargermultidisciplinaryresearchteamwereallowedtoattendanevent,duetoconcernsoveraffectingfarmerresponses).Thefocuswasonthefarmersreactionstoaseriesofquestionspreparedbeforehandbytheresearchteam,allofwhichstirredlivelydialogueonhowfarmersactuallyuseweatherinformation.Theresultwasasubstantiallyimprovedquestionnaire.Wealsosentdraftsbacktofarmerparticipantsforfinalreviews,andsubsequentadjustmentswerethenmadereflectingthewaytheyusedthewordsandunderstoodthesurveyquestions.Thequalitativedatafromthefocusgroupeventsultimatelyinfluencednotonlythewayquestionswereaskedbutalsohowthemodelingisdone,and,especially,howthemodelresultsareinterpreted.Atotalof2211questionnairesweresent,intwoseparatemailings.Therewasalsoafollowupremindercard.Farmerswereofferedapaymentof25 for a 2-hour session that culminated in a provided lunch. Each session was also videotaped, providing the opportunity for all members of the research team to see the results of the event (in that only 3-4 members of the larger multidisciplinary research team were allowed to attend an event, due to concerns over affecting farmer responses). The focus was on the farmers' reactions to a series of questions prepared beforehand by the research team, all of which stirred lively dialogue on how farmers actually use weather information. The result was a substantially improved questionnaire. We also sent drafts back to farmer participants for final reviews, and subsequent adjustments were then made reflecting the way they used the words and understood the survey questions. The qualitative data from the focus group events ultimately influenced not only the way questions were asked but also how the modeling is done, and, especially, how the model results are interpreted. A total of 2211 questionnaires were sent, in two separate mailings. There was also a follow-up reminder card. Farmers were offered a payment of 25 to return the questionnaire. A total of 28% took the offer and the overall return rate was 33%, with 698 usable questionnaires in the econometric analysis. A distinctive aspect of this study is the fact that the research team involves active participation not only by agricultural economists but also by a psychologist and a social psychologist, as well as two meteorologists, and an agronomist (who is also a GIS specialist). The result is a nontraditional behavioral economics approach that is sensitive to the climate and agronomic realities faced by farmers in these zones. This approach has a unique two-fold feature; first, it puts special attention on underlying motives, and second, asks whether there may be a complex expression of both private (self) and public (other, community) interest in how forecasts influence farm level decisions. Yet, the modeling still reflects standard derived demand theory and the general expectancy-value or subjective utility perspective, i.e. that farmers have beliefs about fact events and values relating to the outcomes from those events, and that the demand for weather information is derived from the value (profit, sense of well-being, risk-reducing value) it produces for them. The beliefs represent probability statements about outcomes and the values represent the utility or profit related transformations of meaning about the farmer perceptions of the outcomes. The econometric analysis uses proxy measures of the expectancy-value as independent measures, along with such variables as financial capability of the farmer as represented in farm sales, to explain in a Tobit kind of framework 1) the probability of applying weather forecast information since it influences farm level decision(s), and 2) the extent to which this forecast information is influencing these decision(s). The set of four Tobit models in Table 1 test the influence of recent past and current experience (RPE), short (STF) and long-term forecasts (LTF) on 1) agronomic (e.g. selecting the crop type, spraying), 2) insurance, and 3) marketing decisions, within recent past experience/short-term and long-term forecasts. To test the models, we created four indices represented in balance (joint and nonseparable ratio of public (other) to private (self) interests); attitude as a construct of personal belief and value system, influence of social norms, household and community members, county extension, etc; farmers' need for internal control over crop production; and farm sales representing financial limitations. Preliminary analyses suggest that all the farm decisions are influenced by weather forecast information at a different intensity (Table 1). The probability of that influence increases with balance, as the farmer puts more effort into pursuing the self over the community interests. Influence of others and social norms intensify the use of weather information in the decisions as well. Those who want more control over the farm are likely to be more influenced by weather forecasts. Finally, influence of weather forecasts becomes greater as gross farm income (sales) increases. Other intriguing interpretations are suggested by the changes in the size of the parameter elasticities and marginal effects3, e.g. the control parameter is substantively smaller in the insurance decision, which suggests farmers see insurance as offsetting the need for more control over their decisions. As another example, the balance in private and public interests is less significant and less a factor in the very personal, private marketing decision in contrast to "how one farms" (which is likely more sensitive to community scrutiny) in the agronomic decisions. The larger paper explores these refinements in greater detail. Table 1. Intensity of Weather Forecast Influence on Farm Decisions. Variables Agronomy (Cur. Rec. Past Exp. & Short term forecasts) decisions Agronomy (Long Term Forecasts) decisions E1 E 2 ME 1 ME 2 E 1 E 2 ME 1 ME 2 Balance -.37b -.37b -1.109b -.012b -.23a -.24a -.637a -.0202a Attitude .62c .62c .495c .0052c .71c .72c .560c .0178c Norms .12c .12c .153c .0016c .09b .09b .102b .0032b PBC .15c .15c .157c .0017c .19c .19c .178c .0056c Farm Sale .07b .07b .086b .0009b .02 .02 .024 .0008 Easting .06b .06b -2.2E-6b -2.3E-8b -.01 -.01 3.7E-7 1.2E-8 Insurance decisions Marketing decisions Balance -.12 -.13 -.247 -.033 -.29a -.29a -.779a -.040a Attitude .93c .98c .674c .089c .58c .59c .486c .025c PBC .07 .07 .048 .006 .13b .13b .119b .006b Farm Sale .18c .19c .164c .022c .20c .20c .238c .012c Note: Dependent variable is the degree of influence of climate and weather information and forecasts. a p<0.10, b p<0.05, c p<0.001. 3 E1 is the elasticity at the mean that represents the percentage change in the probability that the weather and climate forecast and information influences decisions at all, and; E2 is the elasticity at the mean for those who are being influenced, the percentage change in the degree of influence. ME1 is the effect of the expected value for the weather and climate already influenced farmers; ME2 is the effect of the probability of being influenced by climate and weather information (elasticity of influence)

    Understanding Farmers’ Forecast Use from Their Beliefs, Values, Social Norms, and Perceived Obstacles

    Get PDF
    Although the accuracy of weather and climate forecasts is continuously improving and new information retrieved from climate data is adding to the understanding of climate variation, use of the forecasts and climate information by farmers in farming decisions has changed little. This lack of change may result from knowledge barriers and psychological, social, and economic factors that undermine farmer motivation to use forecasts and climate information. According to the theory of planned behavior (TPB), the motivation to use forecasts may arise from personal attitudes, social norms, and perceived control or ability to use forecasts in specific decisions. These attributes are examined using data from a survey designed around the TPB and conducted among farming communities in the region of eastern Nebraska and the western U.S. Corn Belt. There were three major findings: 1) the utility and value of the forecasts for farming decisions as perceived by farmers are, on average, around 3.0 on a 0–7 scale, indicating much room to improve attitudes toward the forecast value. 2) The use of forecasts by farmers to influence decisions is likely affected by several social groups that can provide “expert viewpoints” on forecast use. 3) A major obstacle, next to forecast accuracy, is the perceived identity and reliability of the forecast makers. Given the rapidly increasing number of forecasts in this growing service business, the ambiguous identity of forecast providers may have left farmers confused and may have prevented them from developing both trust in forecasts and skills to use them. These findings shed light on productive avenues for increasing the influence of forecasts, which may lead to greater farming productivity. In addition, this study establishes a set of reference points that can be used for comparisons with future studies to quantify changes in forecast use and influence

    Choice of approaches for surgical correction of tricuspid pathology in patients with rheumatic multi-valvular heart disease

    No full text
    Objective: To analyze the results of surgical correction of patients with tricuspid pathology in rheumatic multi-valvular heart disease. Methods: We retrospectively analyzed outcomes of surgical correction of tricuspid valve disease in 292 patients with rheumatic multi-valvular heart defects, who underwent surgery in our clinic. Results: The age of our patients ranged from 12 to 74 years (mean age 36.7 (9.4) years), among them 197 (67.4%) women and 95 (32.6%) - men. According to the degree of circulatory disorders, 21 (7.2%) patients were in NYHA class III and 271 (92.8%) patients - class IV. Of them 235 (80.5%) patients were operated by the method of De Vega using plastic fibrous ring. After tricuspid valve (TV) and fibrous ring repair in 26.9% - tricuspid regurgitation disappeared, in 62.8% - regurgitation decreased to the 1st degree, and the remaining 10.3% of patients had 2nd (moderate) degree tricuspid regurgitation. In 7 (2.38%) cases of infective endocarditis, the "open heart surgery" correction – replacement of TV with biological prosthesis was made. Creation of the bicuspid tricuspid valve techniques was used in 13.4% of cases. Conclusion: Our study demonstrated that correction of tricuspid valve disease in our cohort of patients, including valve repair and replacement and reconstructive surgery of fibrous ring alone or in combination with mitral or aortic valve replacement/ repair is accompanied by reduction of tricuspid regurgitation and reduction of cardiac chamber size and right ventricular pressure. No complications intrinsic to operative technique of tricuspid valve reconstructive surgery as advanced atrioventricular block or myocardial ischemia and infarction were recorded

    Understanding Farmers’ Forecast Use from Their Beliefs, Values, Social Norms, and Perceived Obstacles*

    Get PDF
    Although the accuracy of weather and climate forecasts is continuously improving and new information retrieved from climate data is adding to the understanding of climate variation, use of the forecasts and climate information by farmers in farming decisions has changed little. This lack of change may result from knowledge barriers and psychological, social, and economic factors that undermine farmer motivation to use forecasts and climate information. According to the theory of planned behavior (TPB), the motivation to use forecasts may arise from personal attitudes, social norms, and perceived control or ability to use forecasts in specific decisions. These attributes are examined using data from a survey designed around the TPB and conducted among farming communities in the region of eastern Nebraska and the western U.S. Corn Belt. There were three major findings: 1) the utility and value of the forecasts for farming decisions as perceived by farmers are, on average, around 3.0 on a 0–7 scale, indicating much room to improve attitudes toward the forecast value. 2) The use of forecasts by farmers to influence decisions is likely affected by several social groups that can provide “expert viewpoints” on forecast use. 3) A major obstacle, next to forecast accuracy, is the perceived identity and reliability of the forecast makers. Given the rapidly increasing number of forecasts in this growing service business, the ambiguous identity of forecast providers may have left farmers confused and may have prevented them from developing both trust in forecasts and skills to use them. These findings shed light on productive avenues for increasing the influence of forecasts, which may lead to greater farming productivity. In addition, this study establishes a set of reference points that can be used for comparisons with future studies to quantify changes in forecast use and influence

    Understanding the Influence of Climate Forecasts on Farmer Decisions as Planned Behavior*

    Get PDF
    Results of a set of four regression models applied to recent survey data of farmers in eastern Nebraska suggest the causes driving farmer intentions of using weather and climate information and forecasts in farming decisions. The model results quantify the relative importance of attitude, social norm, perceived behavioral control and financial capability in explaining the influence of information about climate conditions, and short- and long-term forecasts on agronomic, crop insurance, and crop marketing decisions. Attitude, serving as a proxy for the utility gained from the use of such information, had the most profound positive influence on the outcome of all the decisions, followed by norms. The norms in the community, as a proxy for the utility gained from allowing one’s self to be influenced by others, played a larger role in agronomic decisions than in insurance or marketing decisions. In addition, the interaction of controllability (accuracy, availability, reliability, timeliness of weather and climate information), self-efficacy (farmer ability and understanding), and general preference for control was shown to be a substantive cause. Yet, control variables also have an economic side: The farm sales variable as a measure of financial ability and motivation intensified and clarified th
    corecore