759 research outputs found

    Effects of Initial Age Structure of Managed Norway Spruce Forest Area on Net Climate Impact of Using Forest Biomass for Energy

    Get PDF
    We investigated how the initial age structure of a managed, middle boreal (62A degrees N), Norway spruce-dominated (Picea abies L. Karst.) forest area affects the net climate impact of using forest biomass for energy. The model-based analysis used a gap-type forest ecosystem model linked to a life cycle assessment (LCA) tool. The net climate impact of energy biomass refers to the difference in annual net CO2 exchange between the biosystem using forest biomass (logging residues from final felling) and the fossil (reference) system using coal. In the simulations over the 80-year period, the alternative initial age structures of the forest areas were (i) skewed to the right (dominated by young stands), (ii) normally distributed (dominated by middle-aged stands), (iii) skewed to the left (dominated by mature stands), and (iv) evenly distributed (same share of different age classes). The effects of management on net climate impacts were studied using current recommendations as a baseline with a fixed rotation period of 80 years. In alternative management scenarios, the volume of the growing stock was maintained 20% higher over the rotation compared to the baseline, and/or nitrogen fertilization was used to enhance carbon sequestration. According to the results, the initial age structure of the forest area affected largely the net climate impact of using energy biomass over time. An initially right-skewed age structure produced the highest climate benefits over the 80-year simulation period, in contrast to the left-skewed age structure. Furthermore, management that enhanced carbon sequestration increased the potential of energy biomass to replace coal, reducing CO2 emissions and enhancing climate change mitigation.Peer reviewe

    Influence of non-universal effects on dynamical scaling in driven polymer translocation

    Get PDF
    We study the dynamics of driven polymer translocation using both molecular dynamics (MD) simulations and a theoretical model based on the non-equilibrium tension propagation on the cis side subchain. We present theoretical and numerical evidence that the non-universal behavior observed in experiments and simulations are due to finite chain length effects that persist well beyond the relevant experimental and simulation regimes. In particular, we consider the influence of the pore-polymer interactions and show that they give a major contribution to the non-universal effects. In addition, we present comparisons between the theory and MD simulations for several quantities, showing extremely good agreement in the relevant parameter regimes. Finally, we discuss the potential limitations of the present theories.Peer reviewe

    Comparison of six tag types in sea-trout tagging experiments in the Baltic Sea

    Get PDF
    In the international Baltic Sea trout tagging experiment 27 753 hatchery reared sea trout smolts were tagged in Denmark, Finland, Poland and Sweden in 1979 and 1980. The fish were tagged with the original Carlin tag, two modified Carlin tag types (Canadian and Finnish polythene), streamer and Floy tags and Polish tags attached with Monel metal wire. The tag returns were affected by the place of release and smolt quality. The best results were obtained in the case of tags attached with double wire or thread -original Carlin, Canadian and Finnish polythene. The poorest results were obtained with streamer tags

    Amiodarone disrupts cholesterol biosynthesis pathway and causes accumulation of circulating desmosterol by inhibiting 24-dehydrocholesterol reductase

    Get PDF
    Background We have earlier reported that amiodarone, a potent and commonly used antiarrhythmic drug increases serum desmosterol, the last precursor of cholesterol, in 20 cardiac patients by an unknown mechanism. Objective Here, we extended our study to a large number of cardiac patients of heterogeneous diagnoses, evaluated the effects of combining amiodarone and statins (inhibitors of cholesterol synthesis at the rate-limiting step of hydroxy-methyl-glutaryl CoA reductase) on desmosterol levels and investigated the mechanism(s) by which amiodarone interferes with the metabolism of desmosterol using in vitro studies. Methods and Results We report in a clinical case-control setting of 236 cardiac patients (126 with and 110 without amiodarone treatment) that amiodarone medication is accompanied by a robust increase in serum desmosterol levels independently of gender, age, body mass index, cardiac and other diseases, and the use of statins. Lipid analyses in patient samples taken before and after initiation of amiodarone therapy showed a systematic increase of desmosterol upon drug administration, strongly arguing for a direct causal link between amiodarone and desmosterol accumulation. Mechanistically, we found that amiodarone resulted in desmosterol accumulation in cultured human cells and that the compound directly inhibited the 24-dehydrocholesterol reductase (DHCR24) enzyme activity. Conclusion These novel findings demonstrate that amiodarone blocks the cholesterol synthesis pathway by inhibiting DHCR24, causing a robust accumulation of cellular desmosterol in cells and in the sera of amiodarone-treated patients. It is conceivable that the antiarrhythmic potential and side effects of amiodarone may in part result from inhibition of the cholesterol synthesis pathway.Peer reviewe

    ORP2, a cholesterol transporter, regulates angiogenic signaling in endothelial cells

    Get PDF
    https://doi.org/10.1096/fj.202000202ROxysterol-binding protein-related protein 2 (ORP2), a cholesterol-PI(4,5)P(2)countercurrent transporter, was recently identified as a novel regulator of plasma membrane (PM) cholesterol and PI(4,5)P(2)content in HeLa cells. Here, we investigate the role of ORP2 in endothelial cell (EC) cholesterol and PI(4,5)P(2)distribution, angiogenic signaling, and angiogenesis. We show that ORP2 knock-down modifies the distribution of cholesterol accessible to a D4H probe, between late endosomes and the PM. Depletion of ORP2 from ECs inhibits their angiogenic tube formation capacity, alters the gene expression of angiogenic signaling pathways such as VEGFR2, Akt, mTOR, eNOS, and Notch, and reduces EC migration, proliferation, and cell viability. We show that ORP2 regulates the integrity of VEGFR2 at the PM in a cholesterol-dependent manner, the depletion of ORP2 resulting in proteolytic cleavage by matrix metalloproteinases, and reduced activity of VEGFR2 and its downstream signaling. We demonstrate that ORP2 depletion increases the PM PI(4,5)P(2)coincident with altered F-actin morphology, and reduces both VEGFR2 and cholesterol in buoyant raft membranes. Moreover, ORP2 knock-down suppresses the expression of the lipid raft-associated proteins VE-cadherin and caveolin-1. Analysis of the retinal microvasculature in ORP2 knock-out mice generated during this study demonstrates the subtle alterations of morphology characterized by reduced vessel length and increased density of tip cells and perpendicular sprouts. Gene expression changes in the retina suggest disturbance of sterol homeostasis, downregulation of VE-cadherin, and a putative disturbance of Notch signaling. Our data identifies ORP2 as a novel regulator of EC cholesterol and PI(4,5)P(2)homeostasis and cholesterol-dependent angiogenic signaling.Peer reviewe

    NMD and microRNA expression profiling of the HPCX1 locus reveal MAGEC1 as a candidate prostate cancer predisposition gene

    Get PDF
    Conclusions: Further functional studies are needed to fully understand the possible contribution of these miRNAs and MAGEC1 start codon variant to PC

    Analysis of H-3, Cl-36, Ba-133, Cs-134 and Na-22 from synthetic granitic groundwater : an in situ through diffusion experiment at ONKALO

    Get PDF
    A method for analyzing H-3, Cl-36, Na-22, Ba-133 and Cs-134 from simulated groundwater (SGW) samples was introduced. Gamma emitting radionuclides Na-22, Ba-133 and Cs-134 were measured by using an HPGe-detector. Beta emitting H-3 and Cl-36 were separated from gamma emitting Na-22, Ba-133 and Cs-134. AgCl precipitation was used for the separation of Cl-36 from SGW samples with yields of 98 +/- 2%. H-3 was separated by distillation with recoveries of 97 +/- 3%. This method was used for the determination of activity concentrations of H-3, Cl-36, Na-22, Ba-133 and Cs-134 in SGW samples collected from an in situ through diffusion experiment.Peer reviewe
    • …
    corecore