42 research outputs found

    Designing Building Skins with Biomaterials

    Get PDF
    This chapter presents several successful examples of biomaterial facade design. It discusses facade function from aesthetical, functional, and safety perspectives. Special focus is directed on novel concepts for adaptation and special functionalities of facades. Analysis of the structure morphologies and aesthetic impressions related to the bio-based building facades is supported with photographs collected by authors in various locations. Finally, particular adaptations and special functionalities of bio-based facades going beyond traditional building envelope concept are supported by selected case studies

    Empirical investigation to explore potential gains from the amalgamation of Phase Changing Materials (PCMs) and wood shavings

    Get PDF
    The reduction of gained heat, heat peak shifting and the mitigation of air temperature fluctuations are some desirable properties that are sought after in any thermal insulation system. It cannot be overstated that these factors, in addition to others, govern the performance of such systems thus their effect on indoor ambient conditions. The effect of such systems extends also to Heating, Ventilation and Air-conditioning (HVAC) systems that are set up to operate optimally in certain conditions. Where literature shows that PCMs and natural materials such as wood-shavings can provide efficient passive insulation for buildings, it is evident that such approaches utilise methods that are of a degree of intricacy which requires specialist knowledge and complex techniques, such as micro-encapsulation for instance. With technical and economic aspects in mind, an amalgam of PCM and wood-shavings has been created for the purpose of being utilised as a feasible thermal insulation. The amalgamation was performed in the simplest of methods, through submerging the wood shavings in PCM. An experimental procedure was devised to test the thermal performance of the amalgam and compare this to the performance of the same un-amalgamated materials. Comparative analysis revealed that no significant thermal gains would be expected from such amalgamation. However, significant reduction in the total weight of the insulation system would be achieved that, in this case, shown to be up to 20.94%. Thus, further reducing possible strains on structural elements due to the application of insulation on buildings. This can be especially beneficial in vernacular architectural approaches where considerably large amounts and thicknesses of insulations are used. In addition, cost reduction could be attained as wood shavings are significantly cheaper compared to the cost of PCMs

    Biophilic architecture: a review of the rationale and outcomes

    Get PDF
    Contemporary cities have high stress levels, mental health issues, high crime levels and ill health, while the built environment shows increasing problems with urban heat island effects and air and water pollution. Emerging from these concerns is a new set of design principles and practices where nature needs to play a bigger part called “biophilic architecture”. This design approach asserts that humans have an innate connection with nature that can assist to make buildings and cities more effective human abodes. This paper examines the evidence for this innate human psychological and physiological link to nature and then assesses the emerging research supporting the multiple social, environmental and economic benefits of biophilic architecture

    Styryl Quinazolinones as Potential Inducers of Myeloid Differentiation via Upregulation of C/EBPα

    No full text
    The CCAAT enhancer-binding protein α (C/EBPα) plays an important role in myeloid cell differentiation and in the enhancement of C/EBPα expression/activity, which can lead to granulocytic differentiation in acute myeloid leukemia (AML) cells. We found that styryl quinazolinones induce upregulation of C/EBPα expression, and thereby induce myeloid differentiation in human myeloid leukemia cell lines. We screened a series of active styryl quinazolinones and evaluated the structure–activity relationship (SAR) of these small molecules in inducing C/EBPα expression—thereby prompting the leukemic cells to differentiate. We observed that compound 78 causes differentiation at 3 μM concentration, while 1 induces differentiation at 10 μM concentration. We also observed an increase in the expression of neutrophil differentiation marker CD11b upon treatment with 78. Both the C/EBPα and C/EBPε levels were found to be upregulated by treatment with 78. These SAR findings are inspiration to develop further modified styryl quinazolinones, in the path of this novel differentiation therapy, which can contribute to the care of patients with AML

    The Impact of On-Target Resistance Mediated by EGFR-T790M or EGFR-C797S on EGFR Exon 20 Insertion Mutation Active Tyrosine Kinase Inhibitors

    No full text
    Introduction: Mechanisms of resistance to EGFR exon 20 insertion mutation active inhibitors have not been extensively studied in either robust preclinical models or patient-derived rebiopsy specimens. We sought to characterize on-target resistance mutations identified in EGFR exon 20 insertion-mutated lung cancers treated with mobocertinib or poziotinib and evaluate whether these mutations would or would not have cross-resistance to next-generation inhibitors zipalertinib, furmonertinib, and sunvozertinib. Methods: We identified mechanisms of resistance to EGFR exon 20 insertion mutation active inhibitors and then used preclinical models of EGFR exon 20 insertion mutations (A767_V769dupASV, D770_N771insSVD, V773_C774insH) plus common EGFR mutants to probe inhibitors in the absence/presence of EGFR-T790M or EGFR-C797S. Results: Mobocertinib had a favorable therapeutic window in relation to EGFR wild type for EGFR exon 20 insertion mutants, but the addition of EGFR-T790M or EGFR-C797S negated the observed window. Zipalertinib had a favorable therapeutic window for cells driven by EGFR-A767_V769dupASV or EGFR-D770_N771insSVD in the presence or absence of EGFR-T790M. Furmonertinib and sunvozertinib had the most favorable therapeutic windows in the presence or absence of EGFR-T790M in all cells tested. EGFR-C797S in cis to all EGFR mutations evaluated generated dependent cells that were resistant to the covalent EGFR tyrosine kinase inhibitors mobocertinib, zipalertinib, furmonertinib, sunvozertinib, poziotinib, and osimertinib. Conclusions: This report highlights that poziotinib and mobocertinib are susceptible to on-target resistance mediated by EGFR-T790M or -C797S in the background of the most prevalent EGFR exon 20 insertion mutations. Furmonertinib, sunvozertinib, and to a less extent zipalertinib can overcome EGFR-T790M compound mutants, whereas EGFR-C797S leads to covalent inhibitor cross-resistance—robust data that support the limitations of mobocertinib and should further spawn the development of next-generation covalent and reversible EGFR exon 20 insertion mutation active inhibitors with favorable therapeutic windows that are less vulnerable to on-target resistance
    corecore