373 research outputs found

    The enclosure method for the heat equation

    Full text link
    This paper shows how the enclosure method which was originally introduced for elliptic equations can be applied to inverse initial boundary value problems for parabolic equations. For the purpose a prototype of inverse initial boundary value problems whose governing equation is the heat equation is considered. An explicit method to extract an approximation of the value of the support function at a given direction of unknown discontinuity embedded in a heat conductive body from the temperature for a suitable heat flux on the lateral boundary for a fixed observation time is given.Comment: 12pages. This is the final versio

    An inverse source problem for the heat equation and the enclosure method

    Full text link
    An inverse source problem for the heat equation is considered. Extraction formulae for information about the time and location when and where the unknown source of the equation firstly appeared are given from a single lateral boundary measurement. New roles of the plane progressive wave solutions or their complex versions for the backward heat equation are given.Comment: 23page

    Probe method and a Carleman function

    Full text link
    A Carleman function is a special fundamental solution with a large parameter for the Laplace operator and gives a formula to calculate the value of the solution of the Cauchy problem in a domain for the Laplace equation. The probe method applied to an inverse boundary value problem for the Laplace equation in a bounded domain is based on the existence of a special sequence of harmonic functions which is called a {\it needle sequence}. The needle sequence blows up on a special curve which connects a given point inside the domain with a point on the boundary of the domain and is convergent locally outside the curve. The sequence yields a reconstruction formula of unknown discontinuity, such as cavity, inclusion in a given medium from the Dirichlet-to-Neumann map. In this paper, an explicit needle sequence in {\it three dimensions} is given in a closed form. It is an application of a Carleman function introduced by Yarmukhamedov. Furthermore, an explicit needle sequence in the probe method applied to the reduction of inverse obstacle scattering problems with an {\it arbitrary} fixed wave number to inverse boundary value problems for the Helmholtz equation is also given.Comment: 2 figures, final versio

    The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval II. Obstacles with a dissipative boundary or finite refractive index and back-scattering data

    Full text link
    In this paper a wave is generated by an initial data whose support is localized at the outside of unknown obstacles and observed in a limited time on a known closed surface or the same position as the support of the initial data. The observed data in the latter process are nothing but the back-scattering data. Two types of obstacles are considered. One is obstacles with a dissipative boundary condition which is a generalization of the sound-hard obstacles; another is obstacles with a finite refractive index, so-called, transparent obstacles. For each type of obstacles two formulae which yield explicitly the distance from the support of the initial data to unknown obstacles are given.Comment: 34 pages, submitted to Inverse Problems on 13 July 201

    Radiating and non-radiating sources in elasticity

    Full text link
    In this work, we study the inverse source problem of a fixed frequency for the Navier's equation. We investigate that nonradiating external forces. If the support of such a force has a convex or non-convex corner or edge on their boundary, the force must be vanishing there. The vanishing property at corners and edges holds also for sufficiently smooth transmission eigenfunctions in elasticity. The idea originates from the enclosure method: The energy identity and new type exponential solutions for the Navier's equation.Comment: 17 page

    Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: the 1d case

    Get PDF
    International audienceIn this paper we address some ill-posed problems involving the heat or the wave equation in one dimension, in particular the backward heat equation and the heat/wave equation with lateral Cauchy data. The main objective is to introduce some variational mixed formulations of quasi-reversibility which enable us to solve these ill-posed problems by using some classical La-grange finite elements. The inverse obstacle problems with initial condition and lateral Cauchy data for heat/wave equation are also considered, by using an elementary level set method combined with the quasi-reversibility method. Some numerical experiments are presented to illustrate the feasibility for our strategy in all those situations. 1. Introduction. The method of quasi-reversibility has now a quite long history since the pioneering book of Latt es and Lions in 1967 [1]. The original idea of these authors was, starting from an ill-posed problem which satisfies the uniqueness property, to introduce a perturbation of such problem involving a small positive parameter ε. This perturbation has essentially two effects. Firstly the perturbation transforms the initial ill-posed problem into a well-posed one for any ε, secondly the solution to such problem converges to the solution (if it exists) to the initial ill-posed problem when ε tends to 0. Generally, the ill-posedness in the initial problem is due to unsuitable boundary conditions. As typical examples of linear ill-posed problems one may think of the backward heat equation, that is the initial condition is replaced by a final condition, or the heat or wave equations with lateral Cauchy data, that is the usual Dirichlet or Neumann boundary condition on the boundary of the domain is replaced by a pair of Dirichlet and Neumann boundary conditions on the same subpart of the boundary, no data being prescribed on the complementary part of the boundary

    Inverse problems with partial data for a magnetic Schr\"odinger operator in an infinite slab and on a bounded domain

    Full text link
    In this paper we study inverse boundary value problems with partial data for the magnetic Schr\"odinger operator. In the case of an infinite slab in RnR^n, n≥3n\ge 3, we establish that the magnetic field and the electric potential can be determined uniquely, when the Dirichlet and Neumann data are given either on the different boundary hyperplanes of the slab or on the same hyperplane. This is a generalization of the results of [41], obtained for the Schr\"odinger operator without magnetic potentials. In the case of a bounded domain in RnR^n, n≥3n\ge 3, extending the results of [2], we show the unique determination of the magnetic field and electric potential from the Dirichlet and Neumann data, given on two arbitrary open subsets of the boundary, provided that the magnetic and electric potentials are known in a neighborhood of the boundary. Generalizing the results of [31], we also obtain uniqueness results for the magnetic Schr\"odinger operator, when the Dirichlet and Neumann data are known on the same part of the boundary, assuming that the inaccessible part of the boundary is a part of a hyperplane

    Covalent Modification of Lipids and Proteins in Rat Hepatocytes, and In Vitro, by Thioacetamide Metabolites

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemical Research in Toxicology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/tx3001658Thioacetamide (TA) is a well-known hepatotoxin in rats. Acute doses cause centrilobular necrosis and hyperbilirubinemia while chronic administration leads to biliary hyperplasia and cholangiocarcinoma. Its acute toxicity requires its oxidation to a stable S-oxide (TASO) that is oxidized further to a highly reactive S,S-dioxide (TASO2). To explore possible parallels between the metabolism, covalent binding and toxicity of TA and thiobenzamide (TB) we exposed freshly isolated rat hepatocytes to [14C]-TASO or [13C2D3]-TASO. TLC analysis of the cellular lipids showed a single major spot of radioactivity that mass spectral analysis showed to consist of N-acetimidoyl PE lipids having the same side chain composition as the PE fraction from untreated cells; no carbons or hydrogens from TASO were incorporated into the fatty acyl chains. Many cellular proteins contained N-acetyl- or N-acetimidoyl lysine residues in a 3:1 ratio (details to be reported separately). We also oxidized TASO with hydrogen peroxide in the presence of dipalmitoyl phosphatidylenthanolamine (DPPE) or lysozyme. Lysozyme was covalently modified at five of its six lysine side chains; only acetamide-type adducts were formed. DPPE in liposomes also gave only amide-type adducts, even when the reaction was carried out in tetrahydrofuran with only 10% water added. The exclusive formation of N-acetimidoyl PE in hepatocytes means that the concentration or activity of water must be extremely low in the region where TASO2 is formed, whereas at least some of the TASO2 can hydrolyze to acetylsulfinic acid before it reacts with cellular proteins. The requirement for two sequential oxidations to produce a reactive metabolite is unusual, but it is even more unusual that a reactive metabolite would react with water to form a new compound that retains a high degree of chemical reactivity toward biological nucleophiles. The possible contribution of lipid modification to the hepatotoxicity of TA/TASO remains to be determined
    • …
    corecore