Abstract

A Carleman function is a special fundamental solution with a large parameter for the Laplace operator and gives a formula to calculate the value of the solution of the Cauchy problem in a domain for the Laplace equation. The probe method applied to an inverse boundary value problem for the Laplace equation in a bounded domain is based on the existence of a special sequence of harmonic functions which is called a {\it needle sequence}. The needle sequence blows up on a special curve which connects a given point inside the domain with a point on the boundary of the domain and is convergent locally outside the curve. The sequence yields a reconstruction formula of unknown discontinuity, such as cavity, inclusion in a given medium from the Dirichlet-to-Neumann map. In this paper, an explicit needle sequence in {\it three dimensions} is given in a closed form. It is an application of a Carleman function introduced by Yarmukhamedov. Furthermore, an explicit needle sequence in the probe method applied to the reduction of inverse obstacle scattering problems with an {\it arbitrary} fixed wave number to inverse boundary value problems for the Helmholtz equation is also given.Comment: 2 figures, final versio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019