A Carleman function is a special fundamental solution with a large parameter
for the Laplace operator and gives a formula to calculate the value of the
solution of the Cauchy problem in a domain for the Laplace equation. The probe
method applied to an inverse boundary value problem for the Laplace equation in
a bounded domain is based on the existence of a special sequence of harmonic
functions which is called a {\it needle sequence}. The needle sequence blows up
on a special curve which connects a given point inside the domain with a point
on the boundary of the domain and is convergent locally outside the curve. The
sequence yields a reconstruction formula of unknown discontinuity, such as
cavity, inclusion in a given medium from the Dirichlet-to-Neumann map. In this
paper, an explicit needle sequence in {\it three dimensions} is given in a
closed form. It is an application of a Carleman function introduced by
Yarmukhamedov. Furthermore, an explicit needle sequence in the probe method
applied to the reduction of inverse obstacle scattering problems with an {\it
arbitrary} fixed wave number to inverse boundary value problems for the
Helmholtz equation is also given.Comment: 2 figures, final versio