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[1] We present a new iterative approach called Line Adaptation for the Singular Sources
Objective (LASSO) to object or shape reconstruction based on the singular sources
method (or probe method) for the reconstruction of scatterers from the far‐field pattern of
scattered acoustic or electromagnetic waves. The scheme is based on the construction
of an indicator function given by the scattered field for incident point sources in its source
point from the given far‐field patterns for plane waves. The indicator function is then
used to drive the contraction of a surface which surrounds the unknown scatterers.
A stopping criterion for those parts of the surfaces that touch the unknown scatterers is
formulated. A splitting approach for the contracting surfaces is formulated, such that
scatterers consisting of several separate components can be reconstructed. Convergence of
the scheme is shown, and its feasibility is demonstrated using a numerical study with
several examples.
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1. Introduction

[2] Inverse scattering theory has a long history with clas-
sical contributions for example by Lax and Phillips [1967].
An introduction into the theory of acoustic and electromag-
netic inverse scattering can be found in the work of Colton
and Kress [1998] or Kirsch [1996]. More recently, new
classes of methods have been introduced with sampling and
probe methods [see Cakoni and Colton, 2006; Kirsch and
Grinberg, 2008; Potthast, 2006, 2001]. Powerful sampling
schemes have been introduced by Colton and Kirsch [1996]
with the linear sampling method and by Kirsch [1998] with
the factorization method. Further highly interesting methods
are the probe method [Ikehata, 1998], the singular sources
method [Potthast, 2001], the no response test [Luke and
Potthast, 2003], the range test [Potthast et al., 2003] and
Ikehata’s enclosure method, compare with the survey by
Potthast [2006]. Each of these methods exploits different
properties of the scattering map or particular scattered fields
which are then reconstructed from the measurements.
[3] The main idea of many methods is to formulate an

indicator function m defined either in the space Rm or on a
set of test domains. This function characterizes the unknown
scatterers, their physical properties or their shape.
[4] Here, we will study a new realization of the singular

sources method first introduced by Potthast [2000]. It
employs the modulus m(z) := ∣Fs(z, z)∣ of the scattered field
Fs(z, z) for source points in some point z with evaluation

of the scattered field in z. The basic background of the
singular sources method will be introduced in detail in
section 2. The main question we need to address arises from
the way in which the indicator function m(z) for some z 2 R2

is calculated for probe methods. Usually, some approxima-
tion domain G is used, where z 62 G is needed. Convergence
for the reconstruction of m(z) can be shown if the unknown
inclusion D is a subset of the approximation domain G.
If D is unknown, clearly the key algorithmical problem is
the choice of approximation domains G which are adapted
to the knowledge about the unknown scatterers throughout
the reconstruction procedure.
[5] We will study three different methods, two of which

have been proposed in the literature [Ikehata, 1998; Potthast
and Schulz, 2007]. We will discuss advantages and dis-
advantages of the needle approach and of domain sampling
and then, with the Line Adaptation for the Singular Sources
Objective (LASSO) scheme, study a novel iterative approach.
The basic idea of the LASSO scheme is to construct a con-
tractive curve or surface, respectively, which always contains
the unknown scatterers in its interior.
[6] In section 2 we survey the singular sources method on

which the curve iterations are based and provide all neces-
sary definitions. Section 3.3 serves to provide an introduc-
tion into the algorithmical setup which can be employed for
the singular sources method or more general probe methods.
Numerical examples will be presented in section 4 which
prove the feasibility of the method. Here, for simplicity we
restrict our attention to the two‐dimensional case.

2. Singular Sources Method

[7] We study time‐harmonic scattering of acoustic or
electromagnetic waves in two dimensions (see Colton and
Kress [1998] for a detailed introduction). Here, our task
is the determination of some (sound soft or sound hard)
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scatterer D from the knowledge of the far‐field pattern
u∞(x̂, d), x̂, d 2 S for all incident plane waves ui(·, d), d 2 S.
We will employ the notation us(y, d), y 2 R2 \ D, d 2 S for
the scattered field of the incident plane waves ui(·, d). Here,
we will restrict our attention to the two‐dimensional case
and to scattered fields us satisfying the Helmholtz equation

Dþ �2
� �

u ¼ 0 ð1Þ

and the Sommerfeld radiation condition

ffiffi
r

p @

@r
� i�

� �
us xð Þ ! 0; r ¼ xj j ! ∞: ð2Þ

[8] In the simplest case the singular sources method is
based on scattering by a point source

ui xð Þ ¼ F x; zð Þ; x 2 R2 ð3Þ

with source point z 2 R2 \ D. The scattered field for this
singular source is denoted as Fs(x, z) for x 2 R2. For scat-
tering by a sound‐soft obstacle from the boundary condition
Fs(x, z) = −F(x, z) for x 2 ∂D, z 2 R2 \ D we have

Fs x; zð Þj j ! ∞; z ! x 2 @D: ð4Þ

The convergence analysis for the singular sources method as
worked out by Potthast [2001, 2006] shows that we have

Fs z; zð Þj j ! ∞; z ! @D: ð5Þ

[9] The idea of the singular sources method is to use the
behaviour (5) to detect the unknown shape ∂D. The indi-
cator function

� zð Þ :¼ Fs z; zð Þj j ð6Þ

for z in subsets of R2 \ D can be approximately constructed
from the far‐field pattern or measured scattered field. The
reconstruction of (6) from u∞ is carried out in several steps.
[10] 1. We first choose some approximation domainGwith

D�G and z 62 G. Thenwe use the point source approximation

F x; zð Þ �
Z
S
ei�x�dgz dð Þ ds dð Þ; x 2 G ð7Þ

with some density gz 2 L2 (S), i.e. we construct a kernel gz
for a Herglotz wave function (as defined by Colton and
Kress [1998]) to approximate the point source on the
domain of approximationG. The approximation in (7) is to be
understood in the sense that for every � > 0 we can find
a density gz 2 L2 (S) such that

F x; zð Þj �
Z
S
ei�x�dgz dð Þ ds dð Þj � �; x 2 G: ð8Þ

Practically, the density gz is determined by solving a boundary
integral equationZ

S
ei�x�dgz dð Þ ds dð Þ ¼ F x; zð Þ; x 2 @Gz; ð9Þ

which is known as point source equation and is the key
equation employed for the point source method [Potthast,
2001, 1996, 1998]. We employ the abbreviation

wi gz½ � xð Þ :¼
Z
S
ei�x�dgz dð Þ ds dð Þ; x 2 R2 ð10Þ

for the Herglotz wave function considered as an incident
field. We need to remark that equation (9) cannot not have a
solution, but denseness results as proven by Potthast [2001]
show that approximate solutions are possible and can be
found using Tikhonov regularization.
[11] 2. As the second step we note that from the approx-

imation (7) or (8), respectively, we derive a corresponding
approximation for the scattered fields and for the far‐field
pattern for the incident fields F (·, z) and wi. First, for the
scattered fields obtain the approximation

Fs x; zð Þ �
Z
S
us x; dð Þgz dð Þ ds dð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼: ws gz½ � xð Þ

; x 2 Rm n D; ð11Þ

with the density gz 2 L2 (S) with the density from above,
which is varied due to the well‐posedness of the scattering
problem. Second, passing on both sides of (11) to the cor-
responding the far‐field patterns we derive

F∞ x̂; zð Þ �
Z
S
u∞ x̂; dð Þgz dð Þ ds dð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼: w∞ gz½ � x̂ð Þ

; x̂ 2 S: ð12Þ

Here, the approximations ≈ are understood in the sense that
given � > 0 there is a density gz such that the difference
between the right‐hand side of the equation and its left‐hand
side is smaller than �. The field ws[gz] is the scattered field
for the incident field wi[gz] defined in (10). Its far‐field
pattern is given by w∞[gz].
[12] 3. Finally, we apply the Point Source Method (as

introduced to reconstruct (11) above) to the far‐field patterns
F∞(·, z) and w∞ given in (12) to reconstruct the scattered
field Fs(x, z) for x 2 R2 \ G and the field ws on x 2 R2 \ G
(see Potthast [2001] for more details). Then we obtain

Fs x; zð Þ �
Z
S

Z
S
u∞ x̂; dð Þgz dð Þgx x̂ð Þ ds dð Þ ds x̂ð Þ ð13Þ

for x, z 2 R2 \ G in the sense defined above. For �→ 0 in (8)
the right‐hand side of (13) converges to the left‐hand side
[cf. Potthast, 2001].
[13] We show the indicator function for the singular

sources method for a kite shaped domain in Figure 1 and for
two or four domains, respectively, it is shown in Figure 2.

3. Algorithmical Setup for Probe Methods

[14] The reconstruction of the indicator function (6) of the
singular sources method (as for the probe method) needs to
employ approximation domains G for which the unknown
scatterer D is inside of G, i.e.

D � G: ð14Þ
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Though (14) is a sufficient condition only, if it is violated
in general we do not get convergence of the reconstruction
for the indicator function following (13). To guarantee this
condition and then employ the reconstruction we can follow
different approaches. For our following arguments we will
assume D to be a subset of some ball BR with radius R > 0.

3.1. The Needle Approach

[15] The idea of the needle approach is to use curves
(needles) which probe the area under consideration. In the
simplest case this can be a straight line from outside of BR to
some point z 2 BR. If we let G be the complement of this
line in BR, then if we start with z far away from the scatterer
a, then as long as this line is outside of the scatterer D and
does not touch it, we obtain convergence of the recon-
struction of m(z) in z.
[16] There are advantages of the needle approach: The

needle approach is a nice theoretical tool to study the con-
vergence of the method. Needles are thin manifolds and can
reach the area between different scatterers or scatterers
which consist of different separate components. However,
numerically, the needle approach is highly unstable due to
the strong non‐convexity of the corresponding approxima-
tion domains G. Also, since the domains G are strongly
changing throughout the probing procedure, the numerical
approximation of the indicator functions is quite unstable,
leading to rather bad practical reconstruction results.

3.2. Domain Sampling

[17] As an alternative to the needle approach, domain
sampling has been introduced by Potthast et al. [2003] and
Potthast [2004]. The idea of domain sampling is to carry out
a reconstruction for many different domains G and test the
convergence of the reconstructions on the boundary ∂G
of these domains or on sets outside of G. If the recon-
struction is convergent in some area, we use the corre-
sponding reconstruction. We then combine all the good

reconstructions by masking operations and taking pointwise
weighted averages.
[18] Domain sampling is a very stable algorithm for which

convergence can be shown [Potthast and Schulz, 2007].
If the set of sampling domains is chosen sufficiently rich,
domain sampling leads to very good reconstructions as
shown in Figure 1. However, the disadvantage of this
approach is that the reconstructions need to be carried out
for many domains. This needs time and the algorithm looses
much of its potentially high efficiency.

3.3. LASSO Scheme

[19] An alternative to domain sampling keeping its sta-
bility is the following LASSO approach. We define an
iterative procedure which is driven by the probe functional.
However, now the indicator function is reconstructed only on
the boundary of the iteration domains Gn for n = 1, 2, 3, …
We start with some large domain, for example with G0:= BR.
Then, we move the boundary of G inward for all points
x 2 ∂Gwhere the indicator function m(x) is smaller than some
threshold. This guarantees that (14) is satisfied.
[20] The above mentioned contractions are combined with

smoothing of the remaining curve in each step and with
splitting if two parts of the contracting curve touch each
other. We next describe details of the algorithm, where the
splitting procedure can be found in section 3.4. A numerical
study for the LASSO scheme is carried out in section 4.
[21] Next, we describe one step of the iterative LASSO

algorithms. Assume that Gn in the nth step of the algorithm,
n 2 N, is an approximation domain which satisfies (14). The
goal is to obtain a new approximation domain Gn+1 such that
(14) is satisfied and such that we have the contraction property

Gnþ1 �
6¼
Gn: ð15Þ

Here we assume that Gn+1 ≠ Gn; that is, we have a strict
inclusion, thoughwe do not necessarily assume thatGnþ1 �Gn;

Figure 1. The indicator function for the singular sources method for a kite shaped domain. The recon-
struction has been carried out using domain sampling.
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Figure 2. We show a simulation of the indicator function (6) used by the singular sources or probe
method, respectively, for (a) two kite shaped objects and (b) four objects with different shapes. The
objects are clearly visible in dark red.
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that is, some parts of the boundary ∂Gn+1 of Gn+1 might
coincide with parts of the boundary ∂Gn ofGn. If in factGn+1 =
Gn in some approximate sense, we will stop our iterations; that
is, the stopping criterion we employ is

d Gnþ1;Gnð Þ < � ð16Þ

with some appropriate distance � > 0, where d(·,·) denotes the
Haussdorf distance

d A;Bð Þ ¼ maxf sup
x2A;y 62B

x� yj j; sup
x62A;y2B

x� yj jg: ð17Þ

The construction of Gn+1 is carried out as follows. In the first
step we define a new intermediate domain by a contraction

Figure 3. Demonstration of iterative curve defined by the LASSO scheme for the reconstruction of two
separate objects in steps 10 and 20. The unknown obstacles are indicated in light gray.
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ofGn. We will assume thatGn has a boundary of class C
1 and

denote the exterior unit normal by n. Then, given some step
size h > 0 the domain eGn+1 is defined by its boundary

@eGnþ1 :¼ x� h� xð Þ : x 2 @Gnf g ð18Þ

For h sufficiently small, the domain eGn+1 satisfies eGn+1 Gn

and its boundary is of class C0.
[22] We need to guarantee that D � Gn+1. We know we

have ∣Fs(z, z)∣ → ∞ when z → ∂D. As long as D � eGn+1 we
know that we can reconstruct Fs(z, z) on ∂eGn+1. Further,
we know that when a point z 2 ∂eGn+1,h approaches ∂D, then

Figure 4. Demonstration of iterative curve defined by the LASSO scheme for the reconstruction of two
separate objects in steps 40 and 50. The unknown obstacles are indicated in light gray. Here the shape of
the two objects starts to be visible.
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the reconstruction Fas (z, z) of Fs(z, z) must become large in
that point. We use this condition now to define the following
indicator function

� zð Þ :¼
1; F�jsj z; zð Þ < c

0; otherwise:

8<
: ð19Þ

The constant c is one of the basic parameters of the singular
sources method. It is usually chosen to be adequate for some
circular reference domain to provide a good reconstruc-
tion for a given regularization method when reconstructing
Fs(z, z) and is then kept fixed. We use this to define

~Lnþ1 :¼ x� h� xð Þ� xð Þ : x 2 @Gnf g: ð20Þ

The set ~Ln+1 consists of parts which are subsets of ∂Gn and
parts which are subsets of ∂eGn+1, depending on whether the
indicator function (19) shows that we reached the boundary
of the unknown domain D already.
[23] The set ~Ln+1 is piecewise smooth, but it has jumps of

size h where the indicator function h jumps. To achieve a
smooth domain we now apply a smoothing algorithms, pro-
viding a smooth approximation Ln+1 = ∂Gn+1 to ~Ln. The
domainGn+1 is then next iterate for the LASSO scheme as long
as we do not need to apply the splitting described in section 3.4.
[24] There are several methods which can be used for

smoothing of am−1 dimensional manifold ~G�R2 form2N.
We have employed the convolution type mapping

S xð Þ :¼ c�1
x

Z
~G
k x� yð Þ y ds yð Þ; x 2 ~G; ð21Þ

with a constant

cx :¼
Z
~G
k x� yð Þ ds yð Þ; ð22Þ

and G: = {S(x) : x 2 ~G}, where we used Gaussian kernels

k‘ tð Þ ¼ tj j‘e�� tj j; t 2 R2: ð23Þ

with decay rate t > 0 for ‘ = 0 or ‘ = 1. Stronger smoothing
can be achieved by iterating S, i.e., taking SL with some L 2
N. As an alternative smoothing we can employ a smooth
approximation to h in (19), which will lead to a smooth
update of the approximation domain.
[25] For a discretization of a curve in two dimensions, as

used for the numerical examples in section 4, an approxi-
mate version of the smoothing (21) for ‘ = 0 is calculated as
follows. Let p = (p1, p2, …, pn) be an ordered set of n points
pj 2 R2 representing a curveLn+1, for example by using some
global parametrization y over [0, 2p) and pj = y(2p/n( j − 1)).
For an appropriate choice of k the discretized version of the
above integrals leads to smoothing formulas such as

~pj ¼ Spj :¼ 1

4
pmod jþ1;nð Þ þ 2pj þ pmod j�1;nð Þ
� �

; j ¼ 1; ::; n ð24Þ

where mod( j, n) maps j into the set {1, .., n} modulus n. In the
case ‘ = 1 we obtain formulas similar to

~pj ¼ Spj :¼ 1

2
pmod jþ1;nð Þ þ pmod j�1;nð Þ
� �

; j ¼ 1; ::; n: ð25Þ

Figure 5. Demonstration of iterative curve defined by the
LASSO scheme for the reconstruction of two separate
objects in steps 56, 57 and 58. We demonstrate the steps
where the curve touches itself and where splitting is applied.
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We usually repeat the schemes (24) or (25), respectively,
several times. The number of repetitions controls the degree of
smoothing which is achieved, it is used as a smooth-
ing parameter.

3.4. Domain Splitting

[26] The pure contraction as described in section 3.3 does
not allow changes in the topology of the curve ∂D. A solution
to this is domain splitting where we change the topology of

the curve when ever it touches itself in some point x0 2 ∂Gn.
To identify a point where a curve ∂Gn touches itself, we
need to setup a proper distance of a curve to itself.
[27] 1. We use some periodic parametrization g : [0, 2p) →

R2, t↦ g(t) for ∂Gn with period 2p. Then for t 2 [0, 2p) we
define

G	 tð Þ :¼ 
 sð Þ : t � sj j � 	 and t � s	 2�j j � 	f g; ð26Þ

Figure 6. Demonstration of iterative curve defined by the LASSO scheme for the reconstruction of two
separate objects in steps 59 and 66. Smoothing and further processing leads to stationary curves from
step 66 in this example.
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which is the surface which does not include a neighborhood
of the point g(t) when neighborship is defined via the man-
ifold [0, 2p) modulus 2p. The parameter r is has been chosen
by trial and error so far, it is usually some fraction like 1/3 or

1/5 of a typical diameter of one of the components of the
scatterer under consideration.
[28] 2. When ever a point z = g(t) comes close to Gr(t),

we conclude that the curve is touching itself. Then, we split
the curve at g(t) and remove all points which are in a neigh-
borhood of g(t). We usually chose the ball of radius 2r here.
[29] 3. The remaining points are collected into two new

curves G1 and G2. These curves are smoothed separately,
such that we have a new curve which consists of two sep-
arate smooth components.
[30] We start with one curve G. After the first splitting it

consists of two curves G1 and G2. If for example G1 is split
again, we obtain G1,1, G1,2 and G2. A demonstration of the
splitting step can be seen in Figures 5 and 6.

4. Numerical Examples

[31] The LASSO scheme starts with some large curve and
then defines contractions step by step controlled by a
reconstruction of the singular sources or probe method,
respectively. Here, we show examples which demonstrate the
feasibility and power of the tools described in sections 3.3
and 3.4.
[32] The following numerical examples have been carried

out using an integral equation approach for the forward
problem as described by Kress [1989]. With the far‐field
data u∞(x̂, d) for x̂, d 2 S we then carried out the LASSO
reconstruction steps. For every curve which is now given by
a vector of discrete points zk, k = 1, .., N we carried out the
reconstruction of m(zk) at a point z := z + rn(z) with a small
fixed parameter r > 0. For our numerics we have usually
chosen r = 0.1, where our scatterers have diameter of
approximately 1. We have experimented with the step
size h, chosen as h = 0.1, h = 0.2 and h = 0.5. The size of
h will determine the precision of the reconstruction, since
the iteration tests points of distance h and then stops if the
stopping criterion is satisfied. Clearly, a small h needs many
steps until the curves reach the scatterers. This suggests an
adaptive use of h, which is beyond the scope of this work.
[33] We first demonstrate the indicator function in Figure 2.

The unknown objects can be clearly seen in dark red. Here,
we need to keep in mind that a direct reconstruction of the
indicator function is not possible, but that a sufficient con-
dition is that the unknown object is inside of some approxi-
mation domain and a reconstruction is possible outside of
this approximation domain. Figures 3–6 show some selec-
tions of the steps from the full reconstruction process.
[34] We show a second numerical example for the

LASSO scheme in Figures 7 and 8. Here, for four unknown
objects different stages of the iterative process are displayed,
which show that the unknown scatterers (again indicated in
light grey) are found step by step while the curve contracts.
[35] We need to close with some further remarks. The

practical realization of smoothing and splitting has turned
out to be important for the performance of the algorithm.
The level of smoothing is important to keep the recon-
structions of the indicator valid. At the same time smoothing
prevents curves frommoving inward visualized as in Figure 4.
We have implemented the following strategy:
[36] 1. When we do not obtain any further movement

of the curve, but still do not have all points at the bound-
ary indicated by the size of the reconstructed probe functional,

Figure 7. We show reconstruction steps 100, 120 and 140
when reconstructing an unknown object which has four sep-
arate components.
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then we use less smoothing for the further steps. This is
controlled by lowering the smoothing parameter (compare
equations (24) or (25)). We have multiplied it by 0.5 in
this case.

[37] 2. After splitting two domains, we want to smoothen
the outcome of the splitting process. We have multiplied the
smoothing parameter by 4 and continued with the iterations.
[38] 3. Initially, eigenvalues of the domain Gn caused

severe problems to obtain reliable and stable reconstructions
of the indicator function. Numerically, we could avoid the
eigenvalues by choosing some additional interior curve ~G in
Gn which did not allow interior eigenvalues and solving the
point source equation on ~G [ ∂Gn. An alternative is to switch
to the interior impedance problem to obtain a solution to
the point source equation (9), an approach suggested by
A. Kirsch (Mathematical Research Institute Oberwolfach,
private communication, 2011).
[39] The result of this strategy can be seen in the second

example, compare in particular Figure 7, where the result
of smoothing can be observed.

5. Conclusion

[40] We have surveyed several approaches to imple-
menting probe methods for the reconstruction of objects
from the far‐field pattern of acoustic or electromagnetic
waves. In particular, we have discussed the advantages and
disadvantages of the needle approach and domain sampling.
With the LASSO scheme we suggested a novel approach
which remedies some of the difficulties of former schemes.
We have discussed the convergence of the method and
shown numerical examples which show the feasibility of
the approach.

[41] Acknowledgments. The research has been supported by EPSRC
under grants EP/E032419/1 and EP/F033036/1 and by a Leverhulme
research fellowship on Electromagnetic Inverse Scattering. The author is
grateful to Gen Nakamura, Hokkaido University, Japan, for many helpful
discussions and his hospitality during several research visits to Japan. Also,
Andreas Kirsch, Karlsruhe Institute of Technology, provided valuable
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