7,182 research outputs found
Bound States of (Anti-)Scalar-Quarks in SU(3)_c Lattice QCD
Light scalar-quarks \phi (colored scalar particles or idealized diquarks) and
their color-singlet hadronic states are studied with quenched SU(3)_c lattice
QCD in terms of mass generation. We investigate ``scalar-quark mesons''
\phi^\dagger \phi and ``scalar-quark baryons'' \phi\phi\phi as the bound states
of scalar-quarks \phi. We also investigate the bound states of scalar-quarks
\phi and quarks \psi, i.e., \phi^\dagger \psi, \psi\psi\phi and \phi\phi\psi,
which we name ``chimera hadrons''. All the new-type hadrons including \phi are
found to have a large mass due to large quantum corrections by gluons, even for
zero bare scalar-quark mass m_\phi=0 at a^{-1}\sim 1{\rm GeV}. We conjecture
that all colored particles generally acquire a large effective mass due to
dressed gluon effects.Comment: Talk given at The 17th International Spin Physics Symposium
(SPIN2006), Kyoto, Japan, 2-7 Oct 200
Computational procedure for finite difference solution of one-dimensional heat conduction problems reduces computer time
Computational procedure reduces the numerical effort whenever the method of finite differences is used to solve ablation problems for which the surface recession is large relative to the initial slab thickness. The number of numerical operations required for a given maximum space mesh size is reduced
Detection of flux emergence, splitting, merging, and cancellation of network field. I Splitting and Merging
Frequencies of magnetic patch processes on supergranule boundary, namely flux
emergence, splitting, merging, and cancellation, are investigated through an
automatic detection. We use a set of line of sight magnetograms taken by the
Solar Optical Telescope (SOT) on board Hinode satellite. We found 1636 positive
patches and 1637 negative patches in the data set, whose time duration is 3.5
hours and field of view is 112" \times 112". Total numbers of magnetic
processes are followed: 493 positive and 482 negative splittings, 536 positive
and 535 negative mergings, 86 cancellations, and 3 emergences. Total numbers of
emergence and cancellation are significantly smaller than those of splitting
and merging. Further, frequency dependences of merging and splitting processes
on flux content are investigated. Merging has a weak dependence on flux content
only with a power- law index of 0.28. Timescale for splitting is found to be
independent of parent flux content before splitting, which corresponds to \sim
33 minutes. It is also found that patches split into any flux contents with a
same probability. This splitting has a power-law distribution of flux content
with an index of -2 as a time independent solution. These results support that
the frequency distribution of flux content in the analyzed flux range is
rapidly maintained by merging and splitting, namely surface processes. We
suggest a model for frequency distributions of cancellation and emergence based
on this idea.Comment: 32 pages, 10 figures, 1 table, accepted to Ap
Surface damage resulting from rolling contact operating in magnetic field
This paper describes the effects of magnetic field in rolling contact tests of steel by using a two-disc configuration and the investigation of mechanisms involved.
Two contact conditions, namely pure rolling and rolling with 10% sliding were used together with 0.4 and 1.1 Tesla horizontal static magnetic fields created by permanent magnets. Results of optical and scanning electron microscope observations point out that finer wear particles and smoother worn surfaces are produced in the presence of a magnetic field. It is proposed that finer wear particles result from the movement of subsurface crack initiation towards the surface due to the action of magnetic field
Determination of spin Hamiltonian in the Ni magnetic molecule
Magnetic excitations in a Ni magnetic molecule were investigated by
inelastic neutron scattering and bulk susceptibility ()
techniques. The magnetic excitation spectrum obtained from the inelastic
neutron scattering experiments exhibits three modes at energy transfers of
, 1.35, and 1.6 meV. We show that the energy, momentum, and
temperature dependences of the inelastic neutron scattering data and
can be well reproduced by an effective spin Hamiltonian
consisted of intra-molecule exchange interactions, a single-ionic anisotropy,
biquadratic interactions, and Zeeman term. Under a hydrostatic pressure, the
bulk magnetization decreases with increasing pressure, which along with the
biquadratic term indicates spin-lattice coupling present in this system.Comment: 6 pages, 6 figures, and 2 table
Detection of Flux Emergence, Splitting, Merging, and Cancellation of Network Fields. II Apparent Unipolar Flux Change and Cancellation
In this second paper in the series, we investigate occurrence frequencies of
apparent unipolar processes, cancellation, and emergence of patch structures in
quiet regions. Apparent unipolar events are considerably more frequent than
cancellation and emergence as per our definition, which is consistent with Lamb
et al. (2013). Furthermore, we investigate the frequency distributions of
changes in flux during apparent unipolar processes are and found that they
concentrate around the detection limit of the analysis. Combining these
findings with the results of our previous paper, Iida et al. (2012), that
merging and splitting are more dominant than emergence and cancellation, these
results support the understanding that apparent unipolar processes are actually
interactions with and among patches below the detection limit and that there
still are numerous flux interactions between the flux range in this analysis
and below the detection limit. We also investigate occurrence frequency
distributions of flux decrease during cancellation. We found a relatively
strong dependence, 2.480:26 as a power-law index. This strong dependence
on flux is consistent with the model, which is suggested in the previous paper.Comment: 38 pages, 11 figures, accepted for Ap
The small-scale structure of photospheric convection retrieved by a deconvolution technique applied to Hinode/SP data
Solar granules are bright patterns surrounded by dark channels called
intergranular lanes in the solar photosphere and are a manifestation of
overshooting convection. Observational studies generally find stronger upflows
in granules and weaker downflows in intergranular lanes. This trend is,
however, inconsistent with the results of numerical simulations in which
downflows are stronger than upflows through the joint action of gravitational
acceleration/deceleration and pressure gradients. One cause of this discrepancy
is the image degradation caused by optical distortion and light diffraction and
scattering that takes place in an imaging instrument. We apply a deconvolution
technique to Hinode/SP data in an attempt to recover the original solar scene.
Our results show a significant enhancement in both, the convective upflows and
downflows, but particularly for the latter. After deconvolution, the up- and
downflows reach maximum amplitudes of -3.0 km/s and +3.0 km/s at an average
geometrical height of roughly 50 km, respectively. We found that the velocity
distributions after deconvolution match those derived from numerical
simulations. After deconvolution the net LOS velocity averaged over the whole
FOV lies close to zero as expected in a rough sense from mass balance.Comment: 32 pages, 13 figures, accepted for publication in Ap
- …
