Light scalar-quarks \phi (colored scalar particles or idealized diquarks) and
their color-singlet hadronic states are studied with quenched SU(3)_c lattice
QCD in terms of mass generation. We investigate ``scalar-quark mesons''
\phi^\dagger \phi and ``scalar-quark baryons'' \phi\phi\phi as the bound states
of scalar-quarks \phi. We also investigate the bound states of scalar-quarks
\phi and quarks \psi, i.e., \phi^\dagger \psi, \psi\psi\phi and \phi\phi\psi,
which we name ``chimera hadrons''. All the new-type hadrons including \phi are
found to have a large mass due to large quantum corrections by gluons, even for
zero bare scalar-quark mass m_\phi=0 at a^{-1}\sim 1{\rm GeV}. We conjecture
that all colored particles generally acquire a large effective mass due to
dressed gluon effects.Comment: Talk given at The 17th International Spin Physics Symposium
(SPIN2006), Kyoto, Japan, 2-7 Oct 200