7 research outputs found

    Sessile Ciliates (Ciliophora) from Extreme Habitats

    Get PDF
    Π‘Ρ‚Π°Ρ‚ΡŒΡ прСдставляСт собой ΠΎΠ±Π·ΠΎΡ€ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… мСстообитаний, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Ρ‹Π»ΠΈ Π½Π°ΠΉΠ΄Π΅Π½Ρ‹ сидячиС ΠΈΠ½Ρ„ΡƒΠ·ΠΎΡ€ΠΈΠΈ. ОсновноС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ мСстообитаниям, ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹: Π³ΠΈΠΏΠ΅Ρ€Π³Π°Π»ΠΈΠ½Π½Ρ‹ΠΌ Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠ°ΠΌ, Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ²ΠΎΠ΄Π½Ρ‹ΠΌ мСстообитаниям Ρ€Π°Π·Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ΅Ρ‰Π΅Ρ€Π½Ρ‹ΠΌ ΠΈ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹ΠΌ Π²ΠΎΠ΄Π°ΠΌ. ΠΠ½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π°Ρ…ΠΎΠ΄ΠΊΠΈ сукторий Acinetides infundibuliformis, Acineta harpacticicola ΠΈ ΠΏΠ΅Ρ€ΠΈΡ‚Ρ€ΠΈΡ…ΠΈ Cothurnia maritima Π² Π³ΠΈΠΏΠ΅Ρ€Π³Π°Π»ΠΈΠ½Π½Ρ‹Ρ… Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠ°Ρ… (ΠΏΡ€ΠΈ солСности ΠΎΡ‚ 38 Π΄ΠΎ 60 ‰), сукторий Corynophrya abyssalis ΠΈΠ· сообщСства Π³ΠΈΠ΄Ρ€ΠΎΡ‚Π΅Ρ€ΠΌΠΎΠ² (Π³Π»ΡƒΠ±ΠΈΠ½Π° 4095 ΠΌ) ΠΈ Thecacineta calix, Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠΉ Π² Андаманском ΠΌΠΎΡ€Π΅ (Π³Π»ΡƒΠ±ΠΈΠ½Π° 1301 ΠΌ), сукторий Paracineta livadiana, C. lyngbyi ΠΈ ΠΏΠ΅Ρ€ΠΈΡ‚Ρ€ΠΈΡ…ΠΈ C. maritima ΠΈΠ· сСроводородной Π·ΠΎΠ½Ρ‹ Π§Π΅Ρ€Π½ΠΎΠ³ΠΎ моря (Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ 80-300 ΠΌ), Π° Ρ‚Π°ΠΊΠΆΠ΅ сукторий Tokophrya niphargi ΠΈ Spelaeophrya troglocaridis ΠΈ апостомат Gymnodinioides sp. Π² ΠΏΠ΅Ρ‰Π΅Ρ€Π½Ρ‹Ρ… ΠΈ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹Ρ… Π²ΠΎΠ΄Π°Ρ…. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ пСрСчислСнных ΠΈΠ½Ρ„ΡƒΠ·ΠΎΡ€ΠΈΠΉ ΠΊ условиям ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… мСстообитаний. Показано, Ρ‡Ρ‚ΠΎ для ΠΈΠ½Ρ„ΡƒΠ·ΠΎΡ€ΠΈΠΉ-экстрСмофилов Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ физиологичСскиС Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΊ ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌ. Π˜ΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ΡΡ Ρƒ Ρ‚Π°ΠΊΠΈΡ… Π²ΠΈΠ΄ΠΎΠ² морфологичСскиС структуры ΠΈ особСнности размноТСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ адаптациями ΠΊ нСблагоприятным Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌ Π² Ρ†Π΅Π»ΠΎΠΌThe present article addresses an overview of different types of extreme habitats in which sessile ciliates were found. Ciliates were found in different extreme habitats (marine deep waters, hypersaline, caves, and subterranean waters). Authors registered 11 species of sessile ciliates in extreme environments: suctorians Corynophrya abyssalis in a hydrothermal vent field (4090 m depth), Thecacineta calix in the Andaman Sea (1301 m depth), Paracineta livadiana, C. lyngbyi and peritrichous ciliate Cothurnia maritima in hypoxic/anoxic conditions of the Black Sea (80-300 m depth), suctorian ciliates Tokophrya niphargi and Spelaeophrya troglocaridis and apostome ciliate Gymnodinioides sp. in cave and subterranean waters, as well as suctorians Acinetides infundibuliformis, Acineta harpacticicola and peritrichous ciliate C. maritima in hypersaline waters (salinity from 38 ‰ to 60 ‰). The possible adaptations of listed ciliates to extreme habitats are discussed. It is difficult to identify any morphological adaptations of these ciliate species to life in extreme conditions. There are the physiological adaptations to extreme factors in extremophile ciliates. Some morphological structures and breeding characteristics, which are presented in ciliates living in extreme environments, may be adaptations to such conditions in genera

    New reports of sessile ciliates from Amsterdam, The Netherlands

    No full text
    The aim of this contribution is to present some ciliate reports from Amsterdam, the Netherlands. They are: Acineta nitocrae Dovgal, 1984, Metacineta micraster (Penard, 1914), Opercularia sp., Campanella sp., Platycola decumbens Ehrenberg, 1830, Thuricola folliculata Kent, 1881, and Stentor sp. The systematic position of the several finds of these species are given along with the related information in the study. To the best of our knowledge, this is the first time that A. nitocrae has been reported in Northern European freshwaters, which is the third region after Ukraine and Canada where the species was found.Celem pracy jest doniesienie dotyczΔ…ce stwierdzenia orzΔ™skΓ³w z Amsterdamu w Holandii. SΔ… to: Acineta nitocrae Dovgal, 1984, Metacineta micraster (Penard, 1914), Opercularia sp., Campanella sp., Platycola decumbens Ehrenberg, 1830, Thuricola folliculata Kent, 1881 i Stentor sp. Podano pozycjΔ™ systematycznΔ… wybranych gatunkΓ³w. WedΕ‚ug naszej najlepszej wiedzy jest to pierwszy przypadek wystΔ™powania A. nitocrae w sΕ‚odkowodnych wodach Europy PΓ³Ε‚nocnej, ktΓ³re sΔ… trzecim regionem po Ukrainie i Kanadzie, gdzie ten gatunek zostaΕ‚ znaleziony

    Sessile Ciliates (Ciliophora) from Extreme Habitats

    No full text
    Π‘Ρ‚Π°Ρ‚ΡŒΡ прСдставляСт собой ΠΎΠ±Π·ΠΎΡ€ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… мСстообитаний, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Ρ‹Π»ΠΈ Π½Π°ΠΉΠ΄Π΅Π½Ρ‹ сидячиС ΠΈΠ½Ρ„ΡƒΠ·ΠΎΡ€ΠΈΠΈ. ОсновноС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ мСстообитаниям, ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹: Π³ΠΈΠΏΠ΅Ρ€Π³Π°Π»ΠΈΠ½Π½Ρ‹ΠΌ Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠ°ΠΌ, Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ²ΠΎΠ΄Π½Ρ‹ΠΌ мСстообитаниям Ρ€Π°Π·Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ΅Ρ‰Π΅Ρ€Π½Ρ‹ΠΌ ΠΈ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹ΠΌ Π²ΠΎΠ΄Π°ΠΌ. ΠΠ½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π°Ρ…ΠΎΠ΄ΠΊΠΈ сукторий Acinetides infundibuliformis, Acineta harpacticicola ΠΈ ΠΏΠ΅Ρ€ΠΈΡ‚Ρ€ΠΈΡ…ΠΈ Cothurnia maritima Π² Π³ΠΈΠΏΠ΅Ρ€Π³Π°Π»ΠΈΠ½Π½Ρ‹Ρ… Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠ°Ρ… (ΠΏΡ€ΠΈ солСности ΠΎΡ‚ 38 Π΄ΠΎ 60 ‰), сукторий Corynophrya abyssalis ΠΈΠ· сообщСства Π³ΠΈΠ΄Ρ€ΠΎΡ‚Π΅Ρ€ΠΌΠΎΠ² (Π³Π»ΡƒΠ±ΠΈΠ½Π° 4095 ΠΌ) ΠΈ Thecacineta calix, Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠΉ Π² Андаманском ΠΌΠΎΡ€Π΅ (Π³Π»ΡƒΠ±ΠΈΠ½Π° 1301 ΠΌ), сукторий Paracineta livadiana, C. lyngbyi ΠΈ ΠΏΠ΅Ρ€ΠΈΡ‚Ρ€ΠΈΡ…ΠΈ C. maritima ΠΈΠ· сСроводородной Π·ΠΎΠ½Ρ‹ Π§Π΅Ρ€Π½ΠΎΠ³ΠΎ моря (Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ 80-300 ΠΌ), Π° Ρ‚Π°ΠΊΠΆΠ΅ сукторий Tokophrya niphargi ΠΈ Spelaeophrya troglocaridis ΠΈ апостомат Gymnodinioides sp. Π² ΠΏΠ΅Ρ‰Π΅Ρ€Π½Ρ‹Ρ… ΠΈ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹Ρ… Π²ΠΎΠ΄Π°Ρ…. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ пСрСчислСнных ΠΈΠ½Ρ„ΡƒΠ·ΠΎΡ€ΠΈΠΉ ΠΊ условиям ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… мСстообитаний. Показано, Ρ‡Ρ‚ΠΎ для ΠΈΠ½Ρ„ΡƒΠ·ΠΎΡ€ΠΈΠΉ-экстрСмофилов Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ физиологичСскиС Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΊ ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌ. Π˜ΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ΡΡ Ρƒ Ρ‚Π°ΠΊΠΈΡ… Π²ΠΈΠ΄ΠΎΠ² морфологичСскиС структуры ΠΈ особСнности размноТСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ адаптациями ΠΊ нСблагоприятным Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌ Π² Ρ†Π΅Π»ΠΎΠΌThe present article addresses an overview of different types of extreme habitats in which sessile ciliates were found. Ciliates were found in different extreme habitats (marine deep waters, hypersaline, caves, and subterranean waters). Authors registered 11 species of sessile ciliates in extreme environments: suctorians Corynophrya abyssalis in a hydrothermal vent field (4090 m depth), Thecacineta calix in the Andaman Sea (1301 m depth), Paracineta livadiana, C. lyngbyi and peritrichous ciliate Cothurnia maritima in hypoxic/anoxic conditions of the Black Sea (80-300 m depth), suctorian ciliates Tokophrya niphargi and Spelaeophrya troglocaridis and apostome ciliate Gymnodinioides sp. in cave and subterranean waters, as well as suctorians Acinetides infundibuliformis, Acineta harpacticicola and peritrichous ciliate C. maritima in hypersaline waters (salinity from 38 ‰ to 60 ‰). The possible adaptations of listed ciliates to extreme habitats are discussed. It is difficult to identify any morphological adaptations of these ciliate species to life in extreme conditions. There are the physiological adaptations to extreme factors in extremophile ciliates. Some morphological structures and breeding characteristics, which are presented in ciliates living in extreme environments, may be adaptations to such conditions in genera

    Determining Stability Conditions for Haulage Drifts Protected by Coal Pillars

    Full text link
    The aim of this research is to study the stability of haulage drifts and the manifestations of rock pressure in them lengthwise the working area when protecting them with coal pillars.To assess the stability of workings, field experiments were conducted to study the manifestations of rock pressure in the haulage drifts of a steep coal seam. It has been registered that as the breakage face progresses, the displacement of roof rocks on the contour of the drift linearly increases with an increase in the length of the working area.The deformation properties of coal pillars were studied taking into consideration the extent of the convergence of the roof and soil. This paper reports a theoretical model that describes the destruction of the above-drift coal pillars when unloading the coal-bearing massif that hosts the workings.It has been determined that the equilibrium state of coal pillars is ensured when the specific deformation and stress potentials are equal before the occurrence of main cracks of destruction. As the relative deformation of coal pillars increases at compression, when this equality is broken, the specific energy intensity of destruction increases. It is noted that at a distance exceeding l>10 m behind the breakage face, the occurrence of the main cracks of destruction is followed by a stability loss in the coal pillars. As a result of external forces, the change in the volume and shape of the coal pillars causes the intensification of the process of convergence of lateral rocks on the contour of haulage drifts lengthwise the working area and leads, with a certain degree of probability, to a deterioration in the stability of workings.The results of this study could be used to justify the choice of technique to protect haulage drifts. This would allow the timely development of minefield reserves thereby improving the safety of operations. It is recommended that the technique of protecting haulage drifts by coal pillars should be abandone

    Determining Stability Conditions for Haulage Drifts Protected by Coal Pillars

    Full text link
    The aim of this research is to study the stability of haulage drifts and the manifestations of rock pressure in them lengthwise the working area when protecting them with coal pillars.To assess the stability of workings, field experiments were conducted to study the manifestations of rock pressure in the haulage drifts of a steep coal seam. It has been registered that as the breakage face progresses, the displacement of roof rocks on the contour of the drift linearly increases with an increase in the length of the working area.The deformation properties of coal pillars were studied taking into consideration the extent of the convergence of the roof and soil. This paper reports a theoretical model that describes the destruction of the above-drift coal pillars when unloading the coal-bearing massif that hosts the workings.It has been determined that the equilibrium state of coal pillars is ensured when the specific deformation and stress potentials are equal before the occurrence of main cracks of destruction. As the relative deformation of coal pillars increases at compression, when this equality is broken, the specific energy intensity of destruction increases. It is noted that at a distance exceeding l>10 m behind the breakage face, the occurrence of the main cracks of destruction is followed by a stability loss in the coal pillars. As a result of external forces, the change in the volume and shape of the coal pillars causes the intensification of the process of convergence of lateral rocks on the contour of haulage drifts lengthwise the working area and leads, with a certain degree of probability, to a deterioration in the stability of workings.The results of this study could be used to justify the choice of technique to protect haulage drifts. This would allow the timely development of minefield reserves thereby improving the safety of operations. It is recommended that the technique of protecting haulage drifts by coal pillars should be abandone
    corecore