68 research outputs found

    Transit navigation through Northern Sea Route from satellite data and CMIP5 simulations

    Get PDF
    Rapid Arctic sea ice decline over the last few decades opens new perspectives for Arctic marine navigation. Further warming in the Arctic will promote the Northern Sea Route (NSR) as an alternative to the conventional Suez or Panama Canal routes for intercontinental shipping. Here we use both satellite data and CMIP5 ensemble of climate models to estimate the NSR transit window allowing intercontinental navigation between Atlantic and Pacific regions. To this end, we introduce a novel approach to calculate start and end dates of the navigation season along the NSR. We show that modern climate models are able to reproduce the mean time of the NSR transit window and its trend over the last few decades. The selected models demonstrate that the rate of increase of the NSR navigation season will slow down over the next few decades with the RCP4.5 scenario. By the end of the 21st century ensemble-mean estimates show an increase of the NSR transit window by about 4 and 6.5 months according to RCP4.5 and 8.5, respectively. Estimated trends for the end date of the navigation season are found to be stronger compared to those for the start date

    Quasi-biennial oscillation in total ozone: Global behaviour derived from ground-based measurements

    Get PDF
    The quasi-biennial oscillation (QBO) in total ozone (TO) is studied on the basis of TO measurements at the world ground-ased ozone network during 1972-1988. The TO content is on the whole greater in the tropical belt and smaller in high latitudes during the westerly phase of the QBO of the equatorial stratospheric 50 mb wind than during the easterly phase in all seasons. The appropriate TO difference (westerly category minus easterly category) displays certain space structures changing during a year. There are regions with the peculiar annual evolution of this difference, particularly in the Arctic and Antarctic. Spectral analysis reveals bimodality of TO power spectra in the frequency range of QBO periods, with spectral maxima corresponding to 17-23 months and 28-35 months. The large period oscillations are predominant on the whole. The small period oscillations are likely the consequence of interaction between an annual cycle and QBO

    Climatological features of blocking anticyclones: a study of Northern Hemisphere CCM1 model blocking events in present-day and double CO2 concentration atmospheres

    Get PDF
    http://solberg.snr.missouri.edu/gcc/Using output made with the National Center for Atmospheric Research (NCAR) Community Climate Model Version 1 (CCM1), the characteristics of blocking events over the Northern Hemisphere in a ten-year present day control simulation with a CO2 concentration of 330 ppm were compared to those in a previously analyzed observational three-year climatology. The characteristics of blocking events in a double present-day CO2 concentration simulation were then compared to those in the control simulation in order to evaluate how these characteristics might change in an increased CO2 atmosphere. The results demonstrated that in the Northern Hemisphere the CCM1 correctly simulated many characteristics of blocking events such as average annual number of occurrences, annual variations is size and intensity, and preferred formation regions. A more detailed analysis (i.e., by region and season) revealed some di¤erences between the CCM1 and observed blocking events for characteristics such as mean frequency of occurrence, intensity, size and duration. In addition, the model failed to capture adequately the occurrence of blocking events over the western Asian continent. A comparison of the double CO2 concentration run to the control showed that, in general, blocking events were more persistent and weaker, but of similar size in the increased CO2 atmosphere. Also, some statistically signiÞcant regional and seasonally dependent changes were found in the frequency of occurrence, duration, and intensity. Finally, a correlation between block size and intensity, signiÞcant at the 99% conÞdence level, was found in each climatology. This result is similar to a correlation found in the analysis of observations

    Tropical circulation and hydrological cycle response to orbital forcing

    Get PDF
    The intensity of the two major atmospheric tropical circulations, the Hadley and Walker circulation, has been analyzed in simulations with the Kiel Climate Model (KCM) of the early Eemian and the early Holocene, both warmer climate epochs compared to the late Holocene, or pre-industrial era. The KCM was forced by changes in orbital parameters corresponding to the early and late Holocene (9.5kyr BP and pre-industrial) and the early Eemian (126kyr BP). An intensification of the Southern Hemisphere (SH) winter Hadley cell and a northward extension of its rising branch, the Intertropical Convergence Zone, relative to pre-industrial are simulated for both warm periods. The Walker circulation's rising branch is shifted westward towards the Indian Ocean due to an increased zonal tropical sea surface temperature (SST) gradient across the Indo-Pacific Ocean, which drives enhanced easterlies over this region. The simulated vertically-integrated water vapor transport across the Equator shows the strongest response for the SH winter (boreal summer) Hadley cell over the Pacific Ocean due to an enhanced cross-equatorial SST gradient in the tropical Pacific during the early Holocene and the early Eemian. The orbitally-induced increase of the cross-equatorial insolation gradient in the tropical Pacific leads to a strengthening (weakening) of the wind speed and enhanced (reduced) evaporative cooling over the southern (northern) tropical Pacific, which reinforces the initial radiatively-forced meridional SST gradient change. The increased cross-equatorial insolation gradient in combination with the strong wind-evaporation-SST feedback and changing humidity are important mechanisms to enhance the SH winter Hadley circulation response to orbital forcing. Key Points: Intensification of the SH winter Hadley cell for the early Holocene and Eemian. Walker circulation's rising branch is shifted westward towards the Indian Ocean. WES feedback plays key role in intensification of the Hadley circulation

    The Climatology of Blocking Anticyclones for the Northern and Southern Hemispheres: Block Intensity as a Diagnostic

    Get PDF
    A 30-yr climatology of blocking events was compiled by stratifying the data into seasonal and three regional categories for both the Northern and Southern Hemispheres using the NCEP-NCAR reanalyses. Several characteristics of blocking anticyclones were included in the study and these were frequency of occurrence, preferred formation regions, duration, blocking days, and intensity. The block intensity (BI) calculation was modified successfully from a previous study in order to automate the procedure for use with large datasets, and it is applied for the first time to derive a long-term observational record of this quantity. This modification also makes BI suitable for use as a diagnostic tool. Blocking events in the Northern (Southern) Hemisphere were the most persistent and strongest during the cold season and over the Atlantic (Pacific) region, as found using BI to measure intensity. The characteristics of blocking events derived in this study were compared to previous long-term climatological studies and across each hemisphere. It was found that the temporal and spatial distributions in both hemispheres were similar to those of longer-term studies. The interannual variability of blocking was also examined with respect to ENSO-related variability for the entire blocking year. It was found that Northern (Southern) Hemisphere blocking events were stronger and more frequent during La Nin˜a (El Nin˜o) years, a result that is consistent with cyclone variability in each hemisphere. Additionally, these results were compared with previously published studies of interannual variability in blocking occurrence

    Evolution of the Water Vapor Plume over Eastern Europe during Summer 2010 Atmospheric Blocking

    Get PDF
    We present an analysis of water vapor (WV) plume evolution over Eastern Europe (EE) during atmospheric blocking in the summer of 2010, carried out on the basis of satellite (MODIS and MLS instruments), aerological, and NCEP/NCAR reanalysis data. The obtained results show that the development of blocking was accompanied by the development of a positive anomaly of total column water vapor (TCWV) content over the northern part of EE. Local TCWV content from 28 July to 6 August 2010 reached 3.35 cm, a value that exceeded by 3.3 times its content before the block. The surplus of WV was mainly conditioned by the advection of WV due to transfer of moist air from the Atlantic Ocean and the Mediterranean Sea into northern EE and also due to increased evaporation from the surface enriched with water due to increased temperature and wind. We hypothesize that the influx of latent heat in the block area can contribute to the energy supply of the blocking anticyclone and prolong the existence of block. Strong humidification of the troposphere and some dehumidification of the lower stratosphere during the block were accompanied by warming of the troposphere and cooling of the lower stratosphere
    corecore