25 research outputs found

    Nonlinear relationships between atmospheric aerosol and its gaseous precursors: Analysis of long-term air quality monitoring data by means of neural networks

    Get PDF
    The nonlinear features of the relationships between concentrations of aerosol and volatile organic compounds (VOC) and oxides of nitrogen (NOx) in urban environments are derived directly from data of long-term routine measurements of NOx, VOC, and total suspended particulate matter (PM). The main idea of the method used for the analysis is creation of special empirical models based on artificial neural networks. These models which are in essence the nonlinear extension of commonly used linear statistical models are believed to provide the best fit for the real (nonlinear) PM-NOx-VOC relationships under different atmospheric conditions. It is believed that such models may be useful in context of various scientific and practical problems concerning atmospheric aerosols. The method is demonstrated by the example of two empirical models created with independent data-sets collected at two air quality monitoring stations at South Coast Air Basin, California. It is shown that in spite of considerable distance between the monitoring stations (more than 50 km) and thus substantially different environmental conditions, the empirical models manifest several common qualitative features. Specifically, it is found that, under definite conditions, the decrease of the level of NOx or VOC may lead to the increase of mass concentration of aerosol. It is argued that these features are caused by the nonlinear dependence of hydroxyl radical on VOC and NOx.Comment: the paper submitted to Atmospheric Chemistry and Physic

    The consolidated European synthesis of CO2emissions and removals for the European Union and United Kingdom : 1990-2018

    Get PDF
    Acknowledgements FAOSTAT statistics are produced and disseminated with the support of its member countries to the FAO regular budget. Philippe Ciais acknowledges the support of the European Research Council Synergy project SyG-2013-610028 IMBALANCE-P and from the ANR CLAND Convergence Institute. We acknowledge the work of the entire EDGAR group (Marilena Muntean, Diego Guizzardi, Edwin Schaaf and Jos Olivier). We acknowledge Stephen Sitch and the authors of the DGVMs TRENDY v7 ensemble models for providing us with the data. Financial support This research has been supported by the H2020 European Research Council (grant no. 776810).Peer reviewedPublisher PD

    Endocrinologic, neurologic, and visual morbidity after treatment for craniopharyngioma

    Get PDF
    Craniopharyngiomas are locally aggressive tumors which typically are focused in the sellar and suprasellar region near a number of critical neural and vascular structures mediating endocrinologic, behavioral, and visual functions. The present study aims to summarize and compare the published literature regarding morbidity resulting from treatment of craniopharyngioma. We performed a comprehensive search of the published English language literature to identify studies publishing outcome data of patients undergoing surgery for craniopharyngioma. Comparisons of the rates of endocrine, vascular, neurological, and visual complications were performed using Pearson’s chi-squared test, and covariates of interest were fitted into a multivariate logistic regression model. In our data set, 540 patients underwent surgical resection of their tumor. 138 patients received biopsy alone followed by some form of radiotherapy. Mean overall follow-up for all patients in these studies was 54 ± 1.8 months. The overall rate of new endocrinopathy for all patients undergoing surgical resection of their mass was 37% (95% CI = 33–41). Patients receiving GTR had over 2.5 times the rate of developing at least one endocrinopathy compared to patients receiving STR alone or STR + XRT (52 vs. 19 vs. 20%, χ2P < 0.00001). On multivariate analysis, GTR conferred a significant increase in the risk of endocrinopathy compared to STR + XRT (OR = 3.45, 95% CI = 2.05–5.81, P < 0.00001), after controlling for study size and the presence of significant hypothalamic involvement. There was a statistical trend towards worse visual outcomes in patients receiving XRT after STR compared to GTR or STR alone (GTR = 3.5% vs. STR 2.1% vs. STR + XRT 6.4%, P = 0.11). Given the difficulty in obtaining class 1 data regarding the treatment of this tumor, this study can serve as an estimate of expected outcomes for these patients, and guide decision making until these data are available

    Using Multi-Platform Satellite Observations to Study the Atmospheric Evolution of Brown Carbon in Siberian Biomass Burning Plumes

    No full text
    A bulk of evidence from in situ observations and lab experiments suggests that brown carbon (light-absorbing organic compounds in particles) can provide a significant yet highly variable contribution to the overall light absorption by aerosol particles from biomass burning (BB). Partly stemming from the complexity of the atmospheric evolution of organic aerosol (OA), the variability in brown carbon (BrC) absorption makes it difficult to partition the radiative effects of BrC and black carbon (BC) in atmospheric and climate models; as such, there are calls for satellite-based methods that could provide a statistical characterization of BrC absorption and its evolution in different regions of the world, especially in remote BB regions, such as Siberia. This study examined the feasibility of the statistical characterization of the evolution of BrC absorption and related parameters of BB aerosol in smoke plumes from intense wildfires in Siberia through the analysis of a combination of data from three satellite instruments: OMI (Ozone Monitoring Instrument), MISR (Multi-Angle Imaging SpectroRadiometer), and MODIS (Moderate Resolution Imaging Spectroradiometer). Using a Monte Carlo method, which related the satellite retrievals of the absorption and extinction aerosol optical depths to Mie theory calculations of the optical properties of BB aerosol, we found that the BrC absorption, as well as the imaginary refractive index for the OA, decreased significantly in Siberian BB smoke plumes during about 30 h of the daylight evolution, nevertheless remaining considerable until at least 70 h of the daylight evolution. Overall, the study indicated that the analysis of multi-platform satellite observations of BB plumes can provide useful insights into the atmospheric evolution of BrC absorption and the partitioning of BrC and BC contributions to the total light absorption by BB aerosol

    Estimation of the Elemental to Organic Carbon Ratio in Biomass Burning Aerosol Using AERONET Retrievals

    No full text
    The balance between the cooling and warming effects of aerosol originating from open biomass burning (BB) critically depends on the ratio of its major absorbing and scattering components, such as elemental carbon (EC) and organic carbon (OC), but available direct measurements of this ratio in remote regions are limited and rather uncertain. Here, we propose a method to estimate the EC/OC mass ratio in BB aerosol using continuous observations of aerosol optical properties by the Aerosol Robotic Network (AERONET) and apply it to the data from two AERONET sites situated in Siberia. Our method exploits a robust experimental finding (that was reported recently based on laboratory analysis of aerosol from the combustion of wildland fuels) that the single scattering albedo of BB aerosol particles depends linearly on the EC/(EC + OC) mass ratio. We estimated that the mean value of the EC/OC ratio in BB aerosol observed in summer 2012 was 0.036 (±0.009), which is less than the corresponding value (0.061) predicted in our simulations with a chemistry transport model using the emission factors from the Global Fire Emissions Database 4 (GFED4) fire emission inventory. Based on results of our analysis, we propose a parameterization that allows constraining the EC/OC ratio in BB aerosol with available satellite observations of the absorption and extinction aerosol optical depths

    Utilisation d'observations satellitaires multiplateformes pour étudier l'évolution atmosphérique du carbone brun dans les panaches de combustion de la biomasse en Sibérie

    No full text
    International audienceA bulk of evidence from in situ observations and lab experiments suggests that brown carbon (light-absorbing organic compounds in particles) can provide a significant yet highly variable contribution to the overall light absorption by aerosol particles from biomass burning (BB). Partly stemming from the complexity of the atmospheric evolution of organic aerosol (OA), the variability in brown carbon (BrC) absorption makes it difficult to partition the radiative effects of BrC and black carbon (BC) in atmospheric and climate models; as such, there are calls for satellite-based methods that could provide a statistical characterization of BrC absorption and its evolution in different regions of the world, especially in remote BB regions, such as Siberia. This study examined the feasibility of the statistical characterization of the evolution of BrC absorption and related parameters of BB aerosol in smoke plumes from intense wildfires in Siberia through the analysis of a combination of data from three satellite instruments: OMI (Ozone Monitoring Instrument), MISR (Multi-Angle Imaging SpectroRadiometer), and MODIS (Moderate Resolution Imaging Spectroradiometer). Using a Monte Carlo method, which related the satellite retrievals of the absorption and extinction aerosol optical depths to Mie theory calculations of the optical properties of BB aerosol, we found that the BrC absorption, as well as the imaginary refractive index for the OA, decreased significantly in Siberian BB smoke plumes during about 30 h of the daylight evolution, nevertheless remaining considerable until at least 70 h of the daylight evolution. Overall, the study indicated that the analysis of multi-platform satellite observations of BB plumes can provide useful insights into the atmospheric evolution of BrC absorption and the partitioning of BrC and BC contributions to the total light absorption by BB aerosol

    Using Multi-Platform Satellite Observations to Study the Atmospheric Evolution of Brown Carbon in Siberian Biomass Burning Plumes

    No full text
    A bulk of evidence from in situ observations and lab experiments suggests that brown carbon (light-absorbing organic compounds in particles) can provide a significant yet highly variable contribution to the overall light absorption by aerosol particles from biomass burning (BB). Partly stemming from the complexity of the atmospheric evolution of organic aerosol (OA), the variability in brown carbon (BrC) absorption makes it difficult to partition the radiative effects of BrC and black carbon (BC) in atmospheric and climate models; as such, there are calls for satellite-based methods that could provide a statistical characterization of BrC absorption and its evolution in different regions of the world, especially in remote BB regions, such as Siberia. This study examined the feasibility of the statistical characterization of the evolution of BrC absorption and related parameters of BB aerosol in smoke plumes from intense wildfires in Siberia through the analysis of a combination of data from three satellite instruments: OMI (Ozone Monitoring Instrument), MISR (Multi-Angle Imaging SpectroRadiometer), and MODIS (Moderate Resolution Imaging Spectroradiometer). Using a Monte Carlo method, which related the satellite retrievals of the absorption and extinction aerosol optical depths to Mie theory calculations of the optical properties of BB aerosol, we found that the BrC absorption, as well as the imaginary refractive index for the OA, decreased significantly in Siberian BB smoke plumes during about 30 h of the daylight evolution, nevertheless remaining considerable until at least 70 h of the daylight evolution. Overall, the study indicated that the analysis of multi-platform satellite observations of BB plumes can provide useful insights into the atmospheric evolution of BrC absorption and the partitioning of BrC and BC contributions to the total light absorption by BB aerosol

    Impact of the Atmospheric Photochemical Evolution of the Organic Component of Biomass Burning Aerosol on Its Radiative Forcing Efficiency: A Box Model Analysis

    No full text
    We present the first box model simulation results aimed at identification of possible effects of the atmospheric photochemical evolution of the organic component of biomass burning (BB) aerosol on the aerosol radiative forcing (ARF) and its efficiency (ARFE). The simulations of the dynamics of the optical characteristics of the organic aerosol (OA) were performed using a simple parameterization developed within the volatility basis set framework and adapted to simulate the multiday BB aerosol evolution in idealized isolated smoke plumes from Siberian fires (without dilution). Our results indicate that the aerosol optical depth can be used as a good proxy for studying the effect of the OA evolution on the ARF, but variations in the scattering and absorbing properties of BB aerosol can also affect its radiative effects, as evidenced by variations in the ARFE. Changes in the single scattering albedo (SSA) and asymmetry factor, which occur as a result of the BB OA photochemical evolution, may either reduce or enhance the ARFE as a result of their competing effects, depending on the initial concentration OA, the ratio of black carbon to OA mass concentrations and the aerosol photochemical age in a complex way. Our simulation results also reveal that (1) the ARFE at the top of the atmosphere is not significantly affected by the OA oxidation processes compared to the ARFE at the bottom of the atmosphere, and (2) the dependence of ARFE in the atmospheric column and on the BB aerosol photochemical ages almost mirrors the corresponding dependence of SSA

    Impact of the Atmospheric Photochemical Evolution of the Organic Component of Biomass Burning Aerosol on Its Radiative Forcing Efficiency: A Box Model Analysis

    No full text
    We present the first box model simulation results aimed at identification of possible effects of the atmospheric photochemical evolution of the organic component of biomass burning (BB) aerosol on the aerosol radiative forcing (ARF) and its efficiency (ARFE). The simulations of the dynamics of the optical characteristics of the organic aerosol (OA) were performed using a simple parameterization developed within the volatility basis set framework and adapted to simulate the multiday BB aerosol evolution in idealized isolated smoke plumes from Siberian fires (without dilution). Our results indicate that the aerosol optical depth can be used as a good proxy for studying the effect of the OA evolution on the ARF, but variations in the scattering and absorbing properties of BB aerosol can also affect its radiative effects, as evidenced by variations in the ARFE. Changes in the single scattering albedo (SSA) and asymmetry factor, which occur as a result of the BB OA photochemical evolution, may either reduce or enhance the ARFE as a result of their competing effects, depending on the initial concentration OA, the ratio of black carbon to OA mass concentrations and the aerosol photochemical age in a complex way. Our simulation results also reveal that (1) the ARFE at the top of the atmosphere is not significantly affected by the OA oxidation processes compared to the ARFE at the bottom of the atmosphere, and (2) the dependence of ARFE in the atmospheric column and on the BB aerosol photochemical ages almost mirrors the corresponding dependence of SSA
    corecore