49 research outputs found

    Increased fluxes of shelf-derived materials to the central Arctic Ocean

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaao1302, doi:10.1126/sciadv.aao1302.Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water exchange processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A mass balance model for 228Ra suggests that this increase is due to an intensification of shelf-derived material inputs to the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients. Therefore, we suggest that significant changes in the nutrient, carbon, and trace metal balances of the Arctic Ocean are underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters.This work was funded by NSF awards OCE-1458305 to M.A.C. and OCE-1458424 to W.S.M. The Mackenzie River sampling was supported by a Graduate Student Research Award from the North Pacific Research Board to L.E.K. L.E.K. also acknowledges support from a National Defense Science and Engineering Graduate Fellowship. I.G.R. acknowledges funding by the contributors to the U.S. Interagency Arctic Buoy Program, which include the U.S. Coast Guard, the Department of Energy, NASA, the U.S. Navy, the National Oceanic and Atmospheric Administration, and NSF

    Transport of 137Cs And 239,240Pu with Ice-rafted Debris in the Arctic Ocean

    Get PDF
    Ice rafting is the dominant mechanism responsible for the transport of fine-grained sediments from coastal zones to the deep Arctic Basin. Therefore, the drift of ice-rafted debris (IRD) could be a significant transport mechanism from the shelf to the deep basin for radionuclides originating from nuclear fuel cycle activities and released to coastal Arctic regions of the former Soviet Union. In this study, 28 samples of IRD collected from the Arctic ice pack during expeditions in 1989-95 were analyzed for 137Cs by gamma spectrometry and for 239Pu and 240Pu by thermal ionization mass spectrometry. 137Cs concentrations in the IRD ranged from less than 0.2 to 78 Bq/kg (dry weight basis). The two samples with the highest 137Cs concentrations were collected in the vicinity of Franz Josef Land, and their backward trajectories suggest origins in the Kara Sea. Among the lowest 137Cs values are seven measured on sediments entrained on the North American shelf in 1989 and 1995, and sampled on the shelf less than six months later. Concentrations of 239Pu + 240Pu ranged from about 0.02 to 1.8 Bq/kg. The two highest values came from samples collected in the central Canada Basin and near Spitsbergen; calculated backward trajectories suggest at least 14 years of circulation in the Canada Basin in the former case, and an origin near Severnaya Zemlya (at the Kara Sea/Laptev Sea boundary) in the latter case. While most of the IRD samples showed 240Pu/239Pu ratios near the mean global fallout value of 0.185, five of the samples had lower ratios, in the 0.119 to 0.166 range, indicative of mixtures of Pu from fallout and from the reprocessing of weapons-grade Pu. The backward trajectories of these five samples suggest origins in the Kara Sea or near Severnaya Zemlya.  Le transport glaciel constitue le principal mécanisme responsable du transport des sédiments à grain fin depuis les zones côtières jusqu'à la fosse du bassin Arctique. La dérive des débris du transport glaciel pourrait constituer un important mécanisme de transport, depuis la plate-forme continentale jusqu'à la fosse marine, pour des radionucléides provenant d'activités connexes au cycle du combustible nucléaire, radionucléides qui sont éliminés vers les zones côtières arctiques de l'ancienne Union Soviétique. Dans cette étude, on a analysé 28 échantillons de débris de transport glaciel recueillis dans la glace arctique au cours d'expéditions effectuées de 1989 à 1995, en vue d'y déceler du 137Cs par spectrométrie gamma ainsi que du 239Pu et du 240Pu par spectrométrie de masse réalisée par thermo-ionisation. Les concentrations de 137Cs dans les débris de transport glaciel allaient de moins de 0,2 à 78 Bq/kg (poids sec). Les deux échantillons ayant les concentrations en 137Cs les plus élevées ont été recueillis à proximité de l'archipel François-Joseph, et leurs trajectoires régressives suggèrent qu'ils proviennent de la mer de Kara. Parmi les plus faibles valeurs de 137Cs, sept ont été mesurées sur des sédiments arrivés sur la plate-forme continentale nord-américaine en 1989 et 1995 et prélevés sur celle-ci moins de six mois plus tard. Les concentrations en 239Pu et 240Pu allaient d'environ 0,02 à 1,8 Bq/kg. Les deux valeurs les plus élevées venaient d'échantillons recueillis au centre du bassin Canada et près du Spitzberg; le calcul des trajectoires régressives suggère que le 239Pu est resté au moins 14 ans en circulation dans le bassin Canada et que le 240Pu tire son origine des environs de Severnaïa Zemlia (à la frontière de la mer de Kara et de la mer des Laptev). Tandis que la plupart des échantillons de débris de transport glaciel révélaient des rapports 240Pu/239Pu proches de la valeur moyenne (0,185) des retombées radioactives mondiales, cinq des échantillons affichaient des rapports inférieurs, allant de 0,119 à 0,166. Cette fourchette est caractéristique de mélanges de Pu provenant de retombées radioactives et du retraitement du Pu pouvant être utilisé à des fins militaires. Les trajectoires régressives de ces cinq échantillons suggèrent qu'ils proviennent de la mer de Kara ou des environs de Severnaïa Zemlia

    Snowpack measurements suggest role for multi-year sea ice regions in Arctic atmospheric bromine and chlorine chemistry

    Get PDF
    As sources of reactive halogens, snowpacks in sea ice regions control the oxidative capacity of the Arctic atmosphere. However, measurements of snowpack halide concentrations remain sparse, particularly in the high Arctic, limiting our understanding of and ability to parameterize snowpack participation in tropospheric halogen chemistry. To address this gap, we measured concentrations of chloride, bromide, and sodium in snow samples collected during polar spring above remote multi-year sea ice (MYI) and first-year sea ice (FYI) north of Greenland and Alaska, as well as in the central Arctic, and compared these measurements to a larger dataset collected in the Alaskan coastal Arctic by Krnavek et al. (2012). Regardless of sea ice region, these surface snow samples generally featured lower salinities, compared to coastal snow. Surface snow in FYI regions was typically enriched in bromide and chloride compared to seawater, indicating snowpack deposition of bromine and chlorine-containing trace gases and an ability of the snowpack to participate further in bromine and chlorine activation processes. In contrast, surface snow in MYI regions was more often depleted in bromide, indicating it served as a source of bromine-containing trace gases to the atmosphere prior to sampling. Measurements at various snow depths indicate that the deposition of sea salt aerosols and halogen-containing trace gases to the snowpack surface played a larger role in determining surface snow halide concentrations compared to upward brine migration from sea ice. Calculated enrichment factors for bromide and chloride, relative to sodium, in the MYI snow samples suggests that MYI regions, in addition to FYI regions, have the potential to play an active role in Arctic boundary layer bromine and chlorine chemistry. The ability of MYI regions to participate in springtime atmospheric halogen chemistry should be considered in regional modeling of halogen activation and interpretation of satellite-based tropospheric bromine monoxide column measurements

    An Overview of Ocean Climate Change Indicators: Sea Surface Temperature, Ocean Heat Content, Ocean pH, Dissolved Oxygen Concentration, Arctic Sea Ice Extent, Thickness and Volume, Sea Level and Strength of the AMOC (Atlantic Meridional Overturning Circulation)

    Get PDF
    Global ocean physical and chemical trends are reviewed and updated using seven key ocean climate change indicators: (i) Sea Surface Temperature, (ii) Ocean Heat Content, (iii) Ocean pH, (iv) Dissolved Oxygen concentration (v) Arctic Sea Ice extent, thickness, and volume (vi) Sea Level and (vii) the strength of the Atlantic Meridional Overturning Circulation (AMOC). The globally averaged ocean surface temperature shows a mean warming trend of 0.062 ± 0.013 ºC per decade over the last 120 years (1900–2019). During the last decade (2010–2019) the rate of ocean surface warming has accelerated to 0.280 ± 0.068 ºC per decade, 4.5 times higher than the long term mean. Ocean Heat Content in the upper 2,000 m shows a linear warming rate of 0.35 ± 0.08 Wm-2 in the period 1955–2019 (65 years). The warming rate during the last decade (2010–2019) is twice (0.70 ± 0.07 Wm-2) the warming rate of the long term record. Each of the last six decades have been warmer than the previous one. Global surface ocean pH has declined on average by approximately 0.1 pH units (from 8.2 to 8.1) since the industrial revolution (1770). By the end of this century (2100) ocean pH is projected to decline additionally by 0.1-0.4 pH units depending on the RCP (Representative Concentration Pathway) and SSP (Shared Socioeconomic Pathways) future scenario. The time of emergence of the pH climate change signal varies from 8 to 15 years for open ocean sites, and 16-41 years for coastal sites. Global dissolved oxygen levels have decreased by 4.8 petamoles or 2% in the last 5 decades, with profound impacts on local and basin scale habitats. Regional trends are varying due to multiple processes impacting dissolved oxygen: solubility change, respiration changes, ocean circulation changes and multidecadal variability. Arctic sea ice extent has been declining by -13.1% per decade in summer (September) and by -2.6% per decade in winter (March) during the last 4 decades (1979–2020). The combined trends of sea ice extent and sea ice thickness indicate that the volume of non-seasonal Arctic Sea Ice has decreased by 75% since 1979. Global mean sea level has increased in the period 1993–2019 (the altimetry era) at a mean rate of 3.15 0.3 mm year-1 and is experiencing an acceleration of ~ 0.084 (0.06–0.10) mm year-2. During the last century (1900–2015; 115y) global mean sea level (GMSL) has rised 19 cm, and near 40% of that GMSL rise has taken place since 1993 (22y). Independent proxies of the evolution of the Atlantic Meridional Overturning Circulation (AMOC) indicate that AMOC is at its weakest for several hundreds of years and has been slowing down during the last century. A final visual summary of key ocean climate change indicators during the recent decades is provided.Versión del edito

    Remote Sensing of Antarctic Sea Ice with Coordinated Aircraft and Satellite Data Acquisitions

    Get PDF
    Remote sensing of Antarctic sea ice is required to characterize properties of the vast sea ice cover to understand its long-term increase in contrast to the decrease of Arctic sea ice. For this objective, the OIB/TanDEM-X Coordinated Science Campaign (OTASC) was successfully conducted in 2017 to obtain contemporaneous and collocated remote sensing data from NASA's Operation IceBridge (OIB) and the German Aerospace Center (DLR) TanDEM-X Synthetic Aperture Radar (SAR) system at X-band together with Sentinel-1 and RADARSAT-2 SARs at C-band in conjunction with WorldView satellite spectral sensors, surface measurements, and field observations. The Weddell Sea and the Ross Sea were two primary regions while SAR data were also collected over six other regions in the Southern Ocean. Satellite SAR data included both polarimetric and interferometric capabilities to infer snow and sea ice information in three dimensions (3D), while OIB/P-3 aircraft data include snow radar together with altimeter data for snow and sea ice observations in 3D over the Weddell Sea. Across the Ross Sea, IcePOD and AntNZ/York-University flights were carried out together with satellite SAR data acquisitions

    Field and Satellite Observations of the Formation and Distribution of Arctic Atmospheric Bromine Above a Rejuvenated Sea Ice Cover

    Get PDF
    Recent drastic reduction of the older perennial sea ice in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea ice. This increase in the salinity of the overall ice cover could impact tropospheric chemical processes. Springtime perennial ice extent in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km2. In both years seasonal ice was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea ice, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen ice breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with decreases of ozone (O3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the extent of perennial ice was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion

    The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH)

    Get PDF
    The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) had a Special Observing Period (SOP) that ran from November 16, 2018 to February 15, 2019, a period chosen to span the austral warm season months of greatest operational activity in the Antarctic. Some 2200 additional radiosondes were launched during the 3-month SOP, roughly doubling the routine program, and the network of drifting buoys in the Southern Ocean was enhanced. An evaluation of global model forecasts during the SOP and using its data has confirmed that extratropical Southern Hemisphere forecast skill lags behind that in the Northern Hemisphere with the contrast being greatest between the southern and northern polar regions. Reflecting the application of the SOP data, early results from observing system experiments show that the additional radiosondes
    corecore