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Increased fluxes of shelf-derived materials to
the central Arctic Ocean
Lauren E. Kipp,1,2* Matthew A. Charette,1 Willard S. Moore,3

Paul B. Henderson,1 Ignatius G. Rigor4

Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost
thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic
continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water ex-
change processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A
mass balancemodel for 228Ra suggests that this increase is due to an intensification of shelf-derivedmaterial inputs to
the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients.
Therefore, we suggest that significant changes in the nutrient, carbon, and tracemetal balances of theArctic Ocean are
underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters.
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INTRODUCTION
TheArcticOcean is heavily influenced bymargin sources, in part due to
the wide continental shelves thatmake upmore than 50% of its area (1).
Rising temperatures cause shifts in the Arctic system, notably perma-
frost thawing on land and on continental shelves (2), increased river
discharge (3), and reduced ice cover (4); these changes serve to increase
the communication between the shelves and the central basin. Perma-
frost thaw can release solutes from previously frozen mineral soils into
groundwater and river waters; evidence of permafrost-derived carbon
has recently been observed in river basins of the Eurasian Arctic (5).
Rivers deliver terrestrial materials including carbon and trace metals to
the coastal ocean, some of which are exported to the central Arctic
through the Transpolar Drift (TPD) (6, 7). The loss of sea ice will en-
hance the influence of wind stress on river plumes and coastal waters,
which may increase offshore transport (8) and lead to upwelling (9) and
increased turbulence over shelves. Because the transport of shelf-derived
nutrients and trace metals to the open ocean is vital in supporting pri-
mary productivity, it is important to understand how shelf inputs are
changing in response to these drivers.

Radium isotopes are produced through the decay of naturally
occurring thorium isotopes in sediments.Unlike thorium, radium is rel-
atively soluble in seawater (10); hence, short-lived radium concentra-
tions in ocean surface waters are a first-order indicator of shelf- and
margin-derived sediment-water exchange processes. Because thorium
isotopes remain largely bound in sediments, ocean margin sediments
provide a continuous source of radium, with each radium isotope being
regenerated on a time scale determined by its half-life (T1/2), such that
shorter-lived isotopes are renewed more quickly than longer-lived iso-
topes. Radium-228 (228Ra; T1/2 = 5.75 years) is well suited for
monitoring changes in the shelf inputs, because it can integrate over
large spatial scales and respond to changes on subdecadal time periods.
Hence, this isotope has been applied as a flux gauge for sedimentary
trace element inputs (11) and used to examine the relative importance
of coastal inputs to theAtlanticOcean, PacificOcean, and IndianOcean
basins (12). Here, we use 228Ra to show that the flux of materials from
shelves to the central Arctic has increased substantially over the past
decade, indicating changes in surface water chemistry that could affect
primary productivity in this basin.
RESULTS AND DISCUSSION
Radium-228 distribution in surface waters and comparison
to historical studies
We measured the distribution of Ra isotopes in the Arctic Ocean from
theChukchi Shelf to theNorth Pole during the 2015U.S. GEOTRACES
Arctic Transect (GN01). Surface water samples (2 m) were collected at
69 stations (Fig. 1), whereas full water column profiles were obtained
from 20 stations (fig. S1). The 228Ra activities measured on the Chukchi
Fig. 1. Radium-228 activities in surface waters (2 m) of the Arctic Ocean. Ice
back-trajectories determined for each of the sampling stations are shown in black.
The red, green, and magenta symbols indicate the position of the ice 6, 12, and 18
months before each sample was collected, respectively. The 200-m isobath is
highlighted in bold.
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Shelf were similar to activities measured in 2002 (13, 14); however, in
the upper 100m of the central basin (n = 30), 228Ra activities were high-
er than those observed in 1994 (n= 7) (15) and 2007 (n= 11) (Fig. 2 and
figs. S2 and S3) (16). A period of abnormally strong and consistent cy-
clonic circulation conditions preceded sampling in 1994 (17), causing
the maximum 228Ra activities to be observed farther south (80°N) than
in 2007 and 2015 (fig. S4). The 2015 data presented here and the 2007
study completed by Rutgers van der Loeff et al. (16) are the two most
extensive data sets of 228Ra in the central Arctic; thus, we will focus on
the comparison between these 2 years.

Ice drift back-trajectories, used here as a proxy for mixed layer water
mass transport (18), suggest that water above 85°N originated from the
East Siberian Arctic Shelf seas (ESAS; Laptev Sea and East Siberian Sea)
via the TPD (see Materials and Methods) (Fig. 1 and fig. S5). Radium-
228 likely accumulated during the transport of water across the wide
and shallow ESAS (19, 20). Ice drift in 2007 followed a similar trajectory
(fig. S6); thus, changing source waters cannot explain the difference in
activities. In addition, changes due to decay during transit can be ruled
out because the transport time from the shelf to the central Arctic was
similar in both years: Ice back-trajectories suggest transport times of 4 to
16 months and 8 to 18 months for 2007 and 2015, respectively, and
surface water ages based on the ingrowth of thorium-228 (228Th; T1/2 =
1.91 years) with 228Ra suggest similar time scales of 6 to 12 months for
2015 and 1 to≥3 years for 2007 (seeMaterials andMethods) (fig. S7) (16).

A Eurasian shelf source is supported by the relationship of 228Ra
with the longer-lived radium-226 (226Ra; T1/2 = 1600 years); this shelf
endmember has a high 228Ra/226Ra ratio similar to thatmeasured in the
TPD (Fig. 3). A strong indication of shelf origin is also evident in the
correlation between 228Ra and the meteoric water fraction (Fig. 2).
However, this indicator of terrestrial freshwater input was in the same
range for 2007 and 2015; thus, increased river discharge cannot fully
account for the increase in 228Ra. Therefore, the change must be due
to an increase in the input of 228Ra from Arctic shelves.

Sources and sinks of 228Ra in surface waters
Most 228Ra present in the upper 500mof the ocean is due to shelf inputs
(21); the 2015 Arctic Ocean 228Ra inventory for this layer is (6.8 ± 1.4) ×
Kipp et al., Sci. Adv. 2018;4 : eaao1302 3 January 2018
1023 atoms. This inventory was determined by multiplying the average
of the individual station inventories [(7.1 ± 1.4) × 1010 atoms m−2; fig.
S8] by the area of theArctic as defined by Jakobsson (1) (9.54 × 1012m2)
(fig. S8) (see Materials and Methods). Because this study provides an
extensive data set of 228Ra in the upper water column, this inventory
estimate is fairly robust. However, it is biased toward Western Arctic
activities and could be improved with inventory measurements in the
Eastern Arctic.

Arctic Ocean removal processes (sinks) for 228Ra include loss via
radioactive decay and transport from the Arctic basin. Applying the de-
cay rate (0.12 year−1) to the 228Ra inventory yields a loss of 8.2 × 1022

atoms year−1 [estimated range of 6.6 × 1022 to 9.9 × 1022 atoms year−1

(see Materials and Methods)]. The transport loss of 228Ra is estimated
by dividing the inventory of 228Ra by the residence timeof surfacewater,
approximately 3 to 10 years (22). For a conservative estimate, we use
10 years, resulting in a sink of 6.8 × 1022 atoms year−1 (5.4 × 1022 to 1.6 ×
1023 atoms year−1). Thus, the total loss of 228Ra from the surface ocean
is 1.5 × 1023 atoms year−1 (1.2 × 1023 to 2.6 × 1023 atoms year−1).

At steady state, the 228Ra sinks are balanced by upper ocean sources.
Sediments transported by ice to the central Arctic basin are a potential
source of 228Ra to the surface layer. Samples of ice containing visible
sediment were collected on the GN01 transect, and 228Ra activities were
measured in the melted ice and sediment fractions (see Materials and
Methods). The highest sediment activitymeasured was 3.1 ± 0.3 dpm g−1

[(1.3 ± 0.1) × 107 atoms g−1] (table S2), and 21% of the 228Ra desorbed
upon ice melting, although this percentage could vary depending on
salinity and sediment properties. This sediment activity is similar to that
measured on suspended and bottom sediments of the Amazon River
[2 to 3 dpm g−1 (23)] and suspended sediments collected from the
Mackenzie River [2.9 dpm g−1 (seeMaterials andMethods)]. The con-
centration of ice-rafted debris in the central Arctic is thought to vary be-
tween 8 and 84metric tons km−2 (24), and seasonal ice melt equals ~1.0 ×
107 km2 (the average difference in September-March ice extent for 2010–
2015;NOAASea Ice Index,Version2).Using an average ice sediment con-
centration of 32 metric tons km−2 and assuming 21% of the 228Ra de-
sorbed from the sediments upon melting, we estimate the flux of 228Ra
y 16, 2018
Fig. 2. Radium-228 activities in surface waters (<50m) above 85°N as a function
of percentmeteoricwater. Open symbols represent samples collected in 2015 on
the GN01 transect, and closed symbols represent samples collected in 2007 on
the GIPY11 transect (16). Error bars for the data collected in 2007 are smaller than
the symbols.
Fig. 3. Activities of 228Ra and 226Ra measured in surface waters in 2015 (circles),
shown with historical measurements of shelf and river endmembers. Error bars
for the 2015 data are smaller than the symbols. ††This study; +Rutgers van der
Loeff et al. (19); *Smith et al. (15).
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from ice-rafted sediments to be 8.9 × 1020 atoms year−1 (1.2 × 1020 to
4.0 × 1021 atoms year−1). Although there is significant spatial and tem-
poral variability associated with this source, this input is <1% of the
flux of 228Ra to the surface layer.

Rivers supply 228Ra to the ocean through the fresh water dissolved
load and desorption of 228Ra from suspended particles in the river estu-
aries (23). To investigate the dissolved river flux of 228Ra to the Arctic,
we collected bimonthly water samples from the Mackenzie River in
Tsiigehtchic, Northwest Territories, Canada, fromApril 2015 to June 2016
(fig. S9). The averagemeasured 228Ra activity, 16.8 ± 3.7 dpm100 liter−1,
is similar to activities measured in the Lena River in September 1999
(11.1 to 24.9 dpm 100 liter−1) but significantly lower than the activity
measured in theObRiver in September 1999 (40.9 ± 3.7 dpm100 liter−1)
(19). The weighted average dissolved 228Ra in major Arctic rivers was
determined to be 24 ± 13 dpm 100 liter−1 based on the activities and
discharge of these three rivers (seeMaterials andMethods). Scaling this
activity by total Arctic river runoff [(4.2 ± 0.42) × 1012 m3 year−1 (25)]
yields a dissolved 228Ra flux of 4.4 × 1021 atoms year−1 (1.8 × 1021

to 7.4 × 1021 atoms year−1). However, this may be an overestimate be-
cause Ra removal through flocculation during estuarine mixing has
been observed in the Lena River and Ob River (19), in contrast to the
excess 228Ra observed in the Mackenzie River estuary (fig. S10).

The flux of 228Ra due to desorption from riverine particles was
examined through sampling across the salinity gradient of the
Mackenzie River estuary in June 2016. The activity of 228Ra measured
in suspended riverine particles in the Mackenzie River was 2.9 ±
0.3 dpm g−1, and approximately 32% desorbed during estuarine
mixing (fig. S10) (see Materials and Methods). Scaling these values by
the total sediment delivery from 13 of the largest Arctic rivers [2.8 ×
1014 g year−1 (26)] yields a river particle desorption flux of 1.1 × 1021

atoms year−1 (2.5 × 1020 to 2.5 × 1021 atoms year−1). Thus, the total
riverine source is 5.5 × 1021 atoms year−1 (2.0 × 1021 to 9.9 × 1021 atoms
year−1) or about 4% of the total surface loss terms. There are significant
seasonal variations in 228Ra (fig. S9), as well as river sediment and water
discharge (26), although they are unlikely to make Arctic rivers a major
contributor to the surface 228Ra inventory.

Inflowing Pacific Ocean and Atlantic Ocean waters supply 228Ra to
the surface Arctic Ocean. The Pacific inflowwas estimated bymultiply-
ing the 228Ra activity measured in the Bering Strait on the GN01 tran-
sect (7.05 ± 0.02 dpm 100 liter−1; 1s, n = 2) by the volume transport,
Kipp et al., Sci. Adv. 2018;4 : eaao1302 3 January 2018
(3.5 ± 0.3) × 1013 m3 year−1 (27). Whereas the Bering Strait inflow is
well constrained, 228Ra activities in the Bering Seamay vary seasonally
as a result of physical processes over the shelf such as deep winter
mixing. The Atlantic inflow is more difficult to constrain, but because
the 228Ra activities are relatively low, variations in this source will not
significantly change its contribution to the surface 228Ra inventory.
The addition of 228Ra from Atlantic inflow was determined using his-
torical 228Ra measurements in the Greenland Sea and Norwegian Sea
(28) (1.35 ± 0.72 dpm100 liter−1; 1s,n=14) and a transport rate of 2.0 ×
1014 m3 year−1 (estimated range of 1.4 × 1014 to 2.1 × 1014 m3 year−1)
through the Fram Strait and Barents Sea (29). Thus, the total input of
228Ra through advection is 2.2 × 1022 atoms year−1 (1.4 × 1022 to 3.1 ×
1022 atoms year−1), accounting for 15% of the total 228Ra input to the
surface layer.

The combination of sources above leaves approximately 80% of the
total 228Ra input unaccounted for (1.2 × 1023 atoms year−1, estimated
range of 7.5 × 1022 to 2.5 × 1023 atoms year−1; Table 1). The only other
source with a 228Ra inventory large enough to close the 228Ra budget is
continentalmargin sediments. The sharp increase in 228Ra activities ob-
served between 2007 and 2015 indicates that the inputs of 228Ra toArctic
surface waters are not currently in steady state; if shelf sediments are the
major source of 228Ra to surface waters, then this implies radical
changes in near-shore sediment-water exchange processes.

Changing shelf inputs
Shelf processes that could supply significant amounts of 228Ra to the
water column include coastal erosion, permafrost thaw, and increased
exchange between shelf sediments and overlying waters. Coastline ero-
sion rates on the ESAS are some of the highest in the Arctic (30) and are
rising due to increased storm frequency and higher air and sea tempera-
tures (31). The amount of sediment added to the Arctic Ocean due to
erosion is estimated to be 4.3 × 108 metric tons year−1 (32). Assuming
that the 228Ra activity of coastal sediments is the same as that of the sus-
pended sedimentsmeasured in theMackenzie River (2.9 ± 0.3 dpmg−1)
and that the same percentage desorbs when sediments are added to the
ocean (32%), the amount of 228Ra added to the coastal ocean via erosion
is on the order of 1.7 × 1021 atoms year−1. The addition of 228Ra from
this process alone appears to be too small to close the 228Ra budget.

Permafrost contains a reservoir of Ra that may be liberated as a con-
sequence of deepening active layers (2) and a higher frequency and
8

Table 1. Radium-228 sources and sinks (all in 1022 atoms year−1) in the Arctic surface ocean. The shelf flux was determined by difference, assuming that, at
steady state, the sources of 228Ra to the surface layer must be balanced by sinks. The best estimate for each term was used in the mass balance calculation; see
Materials and Methods for details on how the minimum and maximum flux estimates were determined.
Sinks
 Best-estimate flux (1022 atoms year−1)
 Minimum flux (1022 atoms year−1)
 Maximum flux (1022 atoms year−1)
 % of total sinks
Decay
 8.2
 6.6
 9.9
 55
Advection
 6.8
 5.4
 16
 45
Sources
 Best-estimate flux (1022 atoms year−1)
 Minimum flux (1022 atoms year−1)
 Maximum flux (1022 atoms year−1)
 % of total sources
Ice-rafted sediment
 0.089
 0.012
 0.40
 <1
Advection
 2.2
 1.4
 3.1
 15
Rivers
 0.55
 0.20
 0.99
 4
Shelf
 12
 7.5
 25
 81
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magnitude of coastal and inland thermokarst processes (33, 34). The
transport of solutes liberated through permafrost thaw has been ob-
served on catchment-wide scales (35) and could result in an increase
in solute fluxes, including 228Ra, toArctic shelf seas (5).Measurements
of 228Ra in permafrost collected from Inuvik and Tuktoyaktuk, North-
west Territories, Canada, show that 228Ra activities in permafrost sed-
iments (2.5 ± 0.4 dpm g−1; 1s, n = 4) are higher than those in the
active (seasonally thawed) layer (1.5 ± 0.5 dpm g−1; 1s, n = 6) (see
Materials and Methods). To our knowledge, these are the first Ra mea-
surements in permafrost. Further studies on the spatial variability and
desorption of radium isotopes frompermafrost sediments are needed to
estimate the magnitude of this source in the Arctic Ocean Ra budget
under changing climate conditions. In addition to mobilization in
runoff and river discharge, solutes can be transported to the coast
through submarine groundwater discharge, which has been observed
on the Laptev Shelf (36) and may increase in the future as permafrost
coverage is reduced (37), though the spatial variability of this source is
poorly constrained.

Because of the large reservoir of Ra in shelf sediments, enhanced
wind-driven vertical mixing over the shelves, a result of sea ice loss
and a longer open-water season (38), has perhaps the greatest potential
to affect the 228Ra budget. Over the inner ESAS, this process has the
potential to increase sediment-water exchange over an extensive area.
During the 5-year period preceding the 2015 survey, parts of the Laptev
Sea experienced twice as many ice-free days as the 5-year period
preceding the 2007 study (fig. S11), supporting the possibility for
increased verticalmixing over the shelf between 2011 and 2015. The loss
of ice cover and the presence of more mobile ice cause more surface
stress, leading to increased vertical mixing, as well as upwelling and/
or downwelling over the shelf (8); these vertical exchange processes
bring 228Ra sourced from shelf sediments to surface waters. In addition,
the retreat of the ice edge beyond the shelf break allows for wind-driven
upwelling of deeper slope waters onto the shelf (9), which could
transport additional 228Ra released from slope sediments (such as the
228Ra plumes observed off theChukchi Slope; fig. S1) to the surface. This
mechanism of enrichment may also explain why activities over the
Chukchi Shelf have not increased between 2002 (13) and 2015, because
there has not been a significant change in the number of ice-free days
over this shelf in the past decade (fig. S11).

Shelf inputs are also supported by the 226Ra activities measured in
2007 and 2015 (figs. S12 and S13). Because of the longer half-life of
226Ra, this isotope has a larger inventory in surface waters, and a sub-
stantial change in inputs is required to shift the observed activities.
226Ra is also regenerated more slowly in shelf sediments such that a
228Ra/226Ra flux ratio greater than 1 is typical of a shelf sediment
pore water source; ratios as high as 3.9 have been observed over
the Laptev Shelf (19). Ratios between 0.9 and 2.1 were observed in
the TPD in 2015 (Fig. 3), whereas the maximum ratio recorded in
2007 was 1.3 (16). The smaller increase in 226Ra over this time period
compared to 228Ra is consistent with shelves being a relatively larger
source of 228Ra; thus, the major change in 228Ra cannot be fully ex-
plained by a process that would affect both Ra isotopes in the same
way (such as changes in biological uptake, remineralization, or coast-
al erosion). A longer residence time over the shelf could also increase
the activities of both Ra isotopes in surface waters, but a doubling of
the 228Ra inventory over the shelf would require a similar increase in
the shelf water residence time. This is unlikely given the rising
freshwater fluxes to the shelves (3) and increasing wind stress result-
ing from longer open-water seasons (8).
Kipp et al., Sci. Adv. 2018;4 : eaao1302 3 January 2018
On the basis of these two data sets alone, we cannot conclusively
determine the mechanism driving increased shelf inputs. Measure-
ments of 228Ra over the shelves and in the central Arctic must be
collected over multiple years and seasons to elucidate the temporal var-
iability of this tracer, andmore data from the endmember shelf seas are
needed to constrain the spatial variability of the shelf source.

This study provides the first direct estimate of the Arctic shelf flux of
228Ra, whichwill act as an important baselinewithwhich future changes
in Arctic shelf-basin exchange can be monitored. Although the current
flux is similar to that in other ocean basins (Fig. 4A) (12), it is apparent
that shelf inputs have a disproportionately large impact in the Arctic
when normalized to basin area (Fig. 4B). The increase in the supply
of 228Ra to the central Arctic implies that the fluxes of other shelf-
derived species, including carbon, nutrients, and tracemetals, must also
be rising, with the potential for significant changes to the biogeo-
chemistry of the central basin, as shelf waters are eventually transported
to the central Arctic via the TPD. Historical observations of dissolved
organic carbon and dissolved iron concentrations in the central Arctic
show that these species are elevated in the TPD (6, 7). Varying nutrient
and trace metal concentrations in the TPD will have a direct impact on
primary productivity because this pathway delivers nutrients directly
to the surface layer; if concentrations increase significantly, then this
intensified sourcemayminimize the importance of the vertical mixing
supply of nutrients from deep water. At present, productivity is low in
the central Arctic due to both light and nutrient limitations (39). How-
ever, decreasing sea ice coverage will increase primary productivity and
Fig. 4. The coastal flux of 228Ra to each ocean basin. The flux is shown (A) in
atoms year−1 and (B) normalized to the area of each basin in atoms km−2 year−1. The
fluxes frombasins other than theArctic are fromKwon et al. (12), and areas are from the
ETOPO1 surface relief model (56). The area of the Arctic basin is from Jakobsson (1).
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by rising nutrient fluxes. Changing light and nutrient conditions may
cause shifts in the dominant plankton species in surface waters, which
in turn could affect higher trophic levels including fish species and
marine mammals (41, 42). Continued monitoring of shelf inputs to
Arctic surface waters is therefore vital to understanding how the
changing climate will affect the chemistry, biology, and economic re-
sources of the Arctic Ocean.
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MATERIALS AND METHODS
Surface sample collection and processing
Surface water Ra samples (280 liters) were collected from ~2 m using a
submersible surface pump and filtered through a MnO2-coated acrylic
fiber, which quantitatively scavenges Ra from the seawater. Fiber
samples were then ashed in a muffle furnace at 820°C for 24 hours
and the fiber ash was transferred to polystyrene vials, sealed with epoxy
(to prevent 222Rn loss), aged for at least 3 weeks, and counted on a
high-purity, well-type germanium detector to measure 228Ra, using
the lines for 228Ac (338 and 911 keV), and 226Ra, using the line for
214Pb (352 keV). Detector efficiency was determined by measuring
ashed fiber standards prepared with a standard solution containing
226Ra and 232Th with daughters in equilibrium. Analytical uncertain-
ties are reported as 1s.

Water column sample collection and processing
Water column Ra samples were collected using McLane in situ pumps
(McLane WTS-LV) deployed on a 9.5 mm plastic-coated Vectran
line. Seawater was filtered through 1-mm filters to remove particles
and then pumped through aMnO2-coated cellulose cartridge to collect
dissolved Ra, Th, and Ac isotopes [see Henderson et al. (43) for details
of cartridge preparation]. Pumps were programmed to run for 4 hours,
typically filtering 1200 to 1600 liters of seawater at an average flow rate
of 5.6 liters min−1. After collection, cartridges were rinsed with Ra-free
fresh water and dried with filtered compressed air to remove excess
moisture. To determine the cartridge scavenging efficiencies, we
collected small-volume samples of 226Ra (15 to 25 liters) using a Niskin
bottle mounted either on the CTD (conductivity, temperature, and
depth) rosette (shallow casts) or above the pumps (deep casts), and
the activities of Ra measured on these samples were compared to those
determined on the cartridges.

Cartridges were ashed and analyzed by g spectrometry using the
same method as the surface samples. Detector efficiencies were deter-
mined using ashed cartridge standards, and analytical uncertainties are
reported as 1s.

The small-volume 226Ra samples were filtered through MnO2-
coated acrylic fibers. Fibers were then rinsed with Ra-free fresh water,
partially dried, and sealed in a fiber housing for at least 2 weeks to allow
for 222Rn ingrowth. Samples were analyzed for 226Ra via 222Ra emana-
tion and scintillation counting (44). On average, samples were counted
for approximately 230 min, resulting in an analytical error of less than
5%. Fiber standards containing 20 dpm 226Ra (National Institute of
Standards and Technology–certified) were analyzed in the same way
as the samples at least once every 2 weeks; standard reproducibility
was ~3%.

Comparisons between the unfiltered surface samples and the filtered
near-surface samples revealed no consistent differences between filtered
andunfiltered samples. TheCharette andMoore (GN01) andRutgers van
der Loeff (GIPY11) laboratories participated in the 2008 GEOTRACES
Kipp et al., Sci. Adv. 2018;4 : eaao1302 3 January 2018
intercalibration exercise and good agreement was found among the
228Ra activities measured by all three laboratories (45).

Ice back-trajectories
The origin of the ice at each of the stations in the central Arctic was
determined using back-trajectories of buoys deployed on sea ice and
the open ocean as part of the International Arctic Buoy Program
(http://iabp.apl.washington.edu/). The average lifetime of a buoy is
~2 years, and there are typically 20 to 30 buoys drifting on pack ice at
any given time. The location of each buoy is transmitted to the Argos or
Iridium satellite system,which can determine the geographic position of
the buoy with an accuracy of ≤300 m (46). Sea ice motion was
determined using monthly displacements as described in Rigor et al.
(46) and was projected back in time 36 months or until the buoy
reached the coast. The estimated error on the back-trajectories is
~100 km year−1 (47).

We assume that the trajectories of ice drift are representative of
large-scale circulation features of surface waters, such as the TPD
and Beaufort Gyre (18). Ekman transport may also affect the move-
ment of surface waters; at 7 m (the depth of sample collection in
2007), this may cause a ~35° offset between the ice and water
movement (48).

Surface water age
Surface water transport times from the shelf to the location of sampling
were estimated using ice back-trajectories by determining the number
of months elapsed since the ice was over the shelf (<200 m). For the
2007 data, this yielded a transport time of 4 to 16months; the estimated
transport time in 2015 was 8 to 18 months.

Surface water ages were also determined through the ingrowth of
228Th, using the model derived by Rutgers van der Loeff et al. (16)
andbriefly describedhere. Radium-228decays to 228Th, which is particle-
reactive and efficiently scavenged in coastal waters; this results in low
228Th/228Ra activity ratios over continental shelves. Once water is ad-
vected off the shelf, decreased scavenging rates allow 228Th to grow
toward equilibrium with its parent, 228Ra. Thus, the 228Th activity away
from the shelf (228Tht) can be determined using Eq. 1

ð228ThtÞ ¼ ð228Th0Þe�ðlThþlsÞt þ

lTh
lTh þ ls � lRa

ð228Ra0Þðe�lRat � e�ðlThþlsÞtÞ ð1Þ

where ls is the scavenging rate constant once the water parcel leaves the
shelf, 228Th0 and

228Ra0 are the initial
228Th and 228Ra activities over

the shelf, lTh and lRa are the
228Th and 228Ra decay constants, and t is

the time since the water parcel has left the shelf.
The activities of 228Ra and 228Th over the shelf were determined by

finding the average activity of the surface samples collected at stations
over the Chukchi Sea shelf (bottom depth <50 m; n = 4). The average
228Ra activity was 7.17 ± 0.52 dpm 100 liter−1, and the average 228Th
activity was 0.26 ± 0.28 dpm 100 liter−1, corresponding to a 228Th/
228Ra activity ratio of 0.04 ± 0.04 (1s). This value is in agreement with
previous studies: Kaufman et al. (49) noted that the ratio is typically
<0.05 in coastalwaters, Kadko andMuench (13) observed a ratio of <0.06
in Bering Strait inflow, and Lepore andMoran (50) observed ratios of
0.2 ± 0.2 and 0.1 ± 0.1 over the Chukchi shelf break in the summers of
2002 and 2004, respectively. Rutgers van der Loeff et al. (16) used a
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slightly higher shelf ratio of 0.15 ± 0.05 to calculate the age of waters
originating over the Eastern Arctic shelves and noted that the model
is not very sensitive to the initial ratio. A higher initial ratio would result
in shorter transport times.

The scavenging rate constant is estimated using the 234Th-238U
parent-daughter pair, with the assumption that the scavenging rate is
the same for both Th isotopes. Equation 2 was used to determine the
scavenging rate based on the 234Th/238U ratio observed in the shallowest
samples from each station (5 m depth)

ls ¼
l234Thð1� 234

Th
�
238UÞ

234Th=238U
ð2Þ

where ls is the scavenging rate constant, l234Th is the
234Th decay con-

stant, and 234Th and 238U are the activities of total 234Th and dissolved
238U, respectively.

Because the 234Th/238U ratio varied along the GN01 transect, we
used the range in the observed ratios to determine the range of possible
scavenging rates. Above 85°N, the average scavenging rate was 0.43 ±
0.46 year−1 (1s); for the rest of the stations north of the shelf (stations 14
to 57), the minimum scavenging rate was 0 year−1, and the maximum
rate was 1.07 year−1. Using these rates, the age of the water above 85°N
was determined to be in the range of 0.52 to 0.95 years (6 to 12months)
(fig. S7). The ages derived from the 228Th/228Ramodel are in agreement
with those determined from the ice back-trajectories (8 to 18 months).

Using the 228Th/228Ra ingrowth model, Rutgers van der Loeff et al.
(16) estimated the age of the surfacewaters in the TPD in 2007 to be 1 to
≥3 years. This is slightly longer than the transport time based on ice
drift. Both the ice back-trajectories and 228Th/228Ra ingrowthmodel re-
quire assumptions, but the generally good agreement between both
methods and both years suggests that the surface water transport times
in 2007 and 2015were not drastically different. Because the difference in
228Ra activities measured in these 2 years is about a factor of 2, it would
require a difference in transport time equal to one half-life, or 5.75 years,
to explain the offset; on the basis of the transport times derived here, we
do not think this is likely.

Meteoric water fraction
Assuming that the fourmainwatermasses present in theArctic (Pacific,
Atlantic, meteoric, and sea ice melt waters) have consistent and distinct
properties, the contribution of each to the water sampled on the GN01
transect was determined using a system of linear equations. The proper-
ties of salinity, d18O, and nutrient concentrations were used to differen-
tiate the contributions using the endmember compositions and “Arctic
N-P” tracer method of Newton et al. (51). The meteoric water fractions
for the GIPY11 cruise in 2007 were determined by Bauch et al. (52)
using the same approach but slightly different endmember nutrient
concentrations. Using the GN01 endmembers for the GIPY11 data
set would result in a difference of <1.2% in the calculatedmeteoricwater
fraction.

Surface water inventory of 228Ra
The 228Ra inventory in surfacewaterswas calculated using 10 stations in
the central basin (bottom depth >1000m) where water column data for
the upper 500 m were available (table S1). Two stations with bottom
depths of >1000 m were excluded from the inventory calculation due
to poor sampling resolution. A depth threshold of 500 m was chosen
because 228Ra released from deep sea sediments is unlikely to reach the
Kipp et al., Sci. Adv. 2018;4 : eaao1302 3 January 2018
top 500m (21); thus, any 228Ra present in this layermust be from one of
the margin sources included in themass balance (rivers, ice-rafted sedi-
ments, advection, and continental shelves). Depth-integrated inven-
tories were calculated for each station by summing the products of
the average activity of two consecutive samples and the depth interval
between those samples.

Mass balance model: Sinks
Decay
The decay rate of 228Ra is 0.12 year−1;multiplying this rate by the surface
inventory of 228Ra, (6.8 ± 1.4) × 1023 atoms, results in a loss of 8.2 × 1022

atoms year−1. As the decay rate of this isotope is well characterized, the
uncertainty in this sink is a function of the error in the inventory
estimate alone. The variability in the decay estimate was assessed using
the SD in the 228Ra inventory, resulting in a range of 6.6 × 1022 to 9.9 ×
1022 atoms year−1.
Transport
The range in the 228Ra transport sink (5.4 × 1022 to 1.6 × 1023 atoms
year−1) was determined by subtracting the SD from the inventory and
using a residence time of 10 years to find the minimum loss, and add-
ing the SD to the inventory and using a residence time of 5 years to
find the maximum loss. We used a lower limit of 5 years for the
residence time because the 228Ra inventory was determined for the
upper 500 m of the water column, which includes both the surface
mixed layer (residence time of 3 to 5 years) and part of the halocline
(residence time of ~10 years) (22). In addition, the tritium-helium age
method used to determine the residence time likely underestimates
the age of the surface layer, where some gaseous 3Hemay have escaped
to the atmosphere. Because of the range in possible residence times,
the transport sink estimate is less robust than the decay term. For a
conservative shelf flux estimate, we used a residence time of 10 years
in the model; using a shorter residence time would result in a larger
sink and require a greater flux of 228Ra from the shelves to close the
mass balance.

Mass balance model: Sources
Ice-rafted sediment
Two samples of ice containing visible sediment were collected near 88°N
during the GN01 transect. Ice was allowed to melt, and samples were
stored for approximately 1 year to allow for 228Ra equilibration between
the sediment and water phases. The melted ice and sediment fractions
were separated by decanting the water and drying the sediments. The
water was filtered through a small amount of MnO2-coated fiber, and
the fiber was packed and epoxied in a small vial for direct measurement
on a g detector. The activities of 228Ra and 226Ra were measured in both
themelted ice and sediment fractions, using the lines for 228Ac (911 keV)
and 214Pb (352 keV) for 228Ra and 226Ra, respectively. Detector efficien-
cies were determined with a fiber standard spiked with a solution of
known 228Ra and 226Ra and prepared in the same geometry as the sam-
ple. The activity of 228Ra in the sediments was determined to be 3.1 ±
0.3 dpm g−1 and 2.0 ± 0.1 dpm g−1, and the activities in the corre-
sponding melted ice samples were 0.55 ± 0.17 dpm liter−1 and below
our detection limits, respectively (table S2). To determine the amount
of 228Ra that desorbed from ice-rafted sediments, the melted ice activity
was converted to units of disintegrations per minute per gram by
dividing the activity by the volume of water filtered and multiplying
the quotient by the amount of sediment present, and then, this activity
was divided by the activity measured in the sediments. The 226Ra ac-
tivities of the sediments were 1.4 ± 0.1 dpm g −1 and 2.3 ± 0.1 dpm g−1,
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and the respective melted ice activities were 0.38 ± 0.15 dpm liter−1

and 0.41 ± 0.09 dpm liter−1 (table S2). Baskaran (53) observed similar
226Ra activities in ice-rafted sediments collected in theCanada Basin in
2000 (1.76 to 2.17 dpm g−1).

A sample of surface sediments was also collected from the Chukchi
Shelf on the GN01 transect (68.0900°N, −168.1055°E) using a multi-
corer device, and 228Ra and 226Ra activities were measured on the dried
sediments. Six aliquots of sediment (~5 g each) were analyzed using
high-purity, well-type germanium g detectors, and the average activity
of the six samples was 1.1 ± 0.2 dpm 228Ra g−1 and 1.2 ± 0.1 dpm
226Ra g−1. The suspended sediments collected in theMackenzie River
in 2016 had 228Ra and 226Ra activities of 2.9 ± 0.3 dpm g−1 and 3.2 ±
0.1 dpm g−1, respectively. On the basis of these other measurements
of 228Ra and 226Ra in Arctic sediments, we conclude that the 228Ra
activities measured in the ice-rafted sediment samples are reasonable
and possibly even on the upper limit of what we would expect for Arctic
sediments.

For the mass balance calculation, we used the higher activity (3.1 ±
0.3 dpm 228Ra g−1) and propagated the errors on the melted ice and
sediment fractionswith the SD in the amount of icemelt [(1.02± 0.08) ×
107 km2 year−1; NOAA Sea Ice Index, Version 2] and the range in
possible ice-rafted sediment concentrations [8 to 71 metric tons km−2

(24)] to determine a final range of 1.2 × 1020 to 4.0 × 1021 atoms year−1.
This range of ice-rafted sediment concentration was determined from
samples collected during a transect from the Chukchi Sea to the central
Arctic (similar to the path of the GN01 expedition). On the basis of the
patterns of ice drift in 2015 (Fig. 1), it is possible that the ice sampled on
the GN01 transect may have formed in the Laptev Sea or East Siberian
Sea; ice-rafted sediment concentrations in the Laptev Sea have been
found to vary between 9 and 45 metric tons km−2 (average of 16 metric
tons km−2) (54), which is within the range used here.
Rivers
Bimonthly river water samples were collected from theMackenzie River
in Tsiigehtchic, Northwest Territories, Canada, betweenApril 2015 and
June 2016. A 20-liter sample of surface water was collected, and
suspended sediments were allowed to settle overnight. Approximately
1 liter of water was drained to removemost of the suspended sediments,
and then, the remaining water was filtered through a raw acrylic fiber to
remove most remaining sediment and through a MnO2-coated acrylic
fiber to collect Ra. Fiber samples were then processed as described
above. The annual weighted average 228Ra activity of the Mackenzie
River was determined to be 16.8 ± 3.7 dpm 100 liter−1 (1s) (fig. S9).
Rutgers van der Loeff et al. (19) measured similar activities in the Lena
River (11.1 to 24.9 dpm 100 liter−1) but a significantly higher activity in
the Ob River (40.9 ± 3.7 dpm 100 liter−1). The weighted average 226Ra
activity of the Mackenzie River was 17.2 ± 4.0 dpm 100 liter−1 (1s),
which falls between the activities previously observed in the Ob (27.3 ±
0.6 dpm 100 liter−1) and the Lena (8.5 to 13.1 dpm 100 liter−1) (19).

Aweighted average of the 228Ra activities from these three rivers was
calculated on the basis of the amount of discharge from each river (26).
This average (24 ± 13 dpm 100 liter−1) was scaled by the runoff estimate
of Haine et al. (25), (4.2 ± 0.42) × 1012 m3 year−1, to yield a dissolved
228Ra flux of 4.4 × 1021 atoms year−1. The error on this flux was
calculated by propagating the SDs on each of the individual river activ-
ities with the error in the discharge estimate, resulting in a range of pos-
sible flux values between 1.8 × 1021 and 7.4 × 1021 atoms year−1.

In June 2016, samples were collected across the salinity gradient in
Kugmallit Bay, part of the East Channel of the Mackenzie River Delta.
For salinities up to 15, surface water was collected using a surface sub-
Kipp et al., Sci. Adv. 2018;4 : eaao1302 3 January 2018
mersible pump. For salinities 20 and 25, a Niskin bottle was used to
collect water from5 and 9m, respectively. Each 20-liter samplewas pre-
filtered through 10-mm and 1-mM Hytrex cartridges to remove
suspended sediments before being filtered through an acrylic fiber
coatedwithMnO2 to scavenge Ra isotopes. Fibers were then rinsedwith
Ra-free fresh water to remove salt and any remaining sediment, and
ashed in a muffle furnace at 820°C for 24 hours. Fiber ash was
transferred to polystyrene vials, sealed with epoxy (to prevent 222Rn
loss), and counted on high-purity, well-type germanium detectors to
measure 228Ra, using the line for 228Ac (911 keV), and 226Ra, using
the line for 214Pb (352 keV). Detector efficiencies were determined by
measuring ashed fiber standards prepared with a standard solution
containing 226Ra and 232Th with daughters in equilibrium.

The amount of 228Ra released from suspended particles was deter-
mined to be 0.94 ± 0.25 dpm g−1 by dividing the difference between the
highest 228Ra activities observed in the estuarinemixing zone (salinity =
3 to 9; 35 ± 4 dpm 100 liter−1, 1s, n = 3) and the average 228Ra activity
in freshwater samples (salinity < 0.5; 19 ± 4, 1s, n = 7) by the concen-
tration of suspended particles in fresh Mackenzie River water (0.17 ±
0.02 g liter−1). This suspended sediment loading was determined by
filtering a known amount of river water through a 0.22-mm polyether-
sulfone membrane filter and dividing the weight of the dried sediments
captured on the filter by the amount of water filtered. Because of the
variability in the 228Ra activity of the freshwater endmember (figs. S9
and S10), this estimate of desorbed 228Ra could be improved by further
sampling in the Mackenzie River and in Eurasian rivers.

The activity of 228Ra measured in suspended particles was 2.9 ±
0.3 dpm g−1; thus, approximately 32% of the particulate 228Ra desorbed
during estuarine mixing; this is similar to previous estimates of 228Ra
desorption from riverine particles (23). However, this estimate is higher
than the percentage of 226Ra released from suspended sediments, which
was determined to be 15% based on a difference in freshwater and es-
tuarine activities of 8.2 ± 0.7 dpm 226Ra 100 liter−1 and a particulate
activity of 3.2 ± 0.1 dpm 226Ra g−1. Because the desorption of both Ra
isotopes is expected to be similar, the larger release of 228Ra in the estu-
arine mixing zone suggests that there is an additional input of 228Ra
from bottom sediments (23). Here, we do not separate the addition
of 228Ra due to desorption from fresh riverine particles and the 228Ra
sourced from diffusion from benthic sediments or submarine ground-
water discharge; this may overestimate the riverine source of 228Ra and
result in a more conservative estimate of the shelf source.

The activity of 228Ra desorbed from suspended particles was scaled by
the amount of sediment delivery fromArctic rivers (26), 2.8 ×1014 g year−1,
yielding a desorption flux of 1.1 × 1021 atoms year−1. Holmes et al. (26)
did not provide an error estimate for sediment delivery, but the range in
compiled literature values is ±70%. By propagating this variability with
the errors on the 228Rameasurements, we conclude that the range in the
derived desorption flux is 2.5 × 1020 to 2.5 × 1021 atoms year−1. Adding
the dissolved 228Ra flux and the flux of 228Ra from desorption yields a
best estimate of the total riverine flux of 228Ra of 5.5 × 1021 atoms year−1,
with a possible range of 2.0 × 1021 to 9.9 × 1021 atoms year−1.

Permafrost
Samples of active layer and permafrost sediments were collected from
Inuvik and Tuktoyaktuk in the Northwest Territories, Canada, in June
2016. Sediments were dried and homogenized, and three 3-g aliquots
from each sample were placed in polystyrene vials for analysis on
high-purity well-type germanium g detectors. For the Tuktoyaktuk per-
mafrost, only one 5-g aliquot of sediment was analyzed due to a scarcity
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of sediment. The activity of 228Ra in the sediments was measured using
the line for 228Ac (911 keV), and 226Ra was measured using the line for
214Pb (352 keV). Similar to the pattern observed for 228Ra, activities
of 226Ra were higher in permafrost compared to active layer sedi-
ments: Average activities of 2.2 ± 0.3 dpm g−1 (1s, n = 4) and 1.8 ±
0.3 dpm g−1 (1s, n = 6) were observed in permafrost and active layer
sediments, respectively.

Open-water days
The number of open-water days was determined using daily bootstrap
sea ice concentrations fromNimbus-7 SMMR and DMSP SSM/I-SSMIS
data provided by theNational Snow and IceDataCenter (55). An open-
water daywas defined as any day duringwhich the sea ice concentration
was less than 15%.
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/1/eaao1302/DC1
fig. S1. Activities of 228Ra in the upper 500 m of the water column with contours indicating the
fraction of meteoric water.
fig. S2. Surface water (<15 m) activities of 228Ra from GN01 (circles) shown with activities of
228Ra measured on historical expeditions in the Arctic.
fig. S3. Profiles of 228Ra on the GN01 cruise (2015) compared to the surface samples collected
on the GIPY11 cruise (2007) (16).
fig. S4. Radium-228 activities in the Transpolar Drift in 1994, 2007, and 2015.
fig. S5. Radium-228 activities in surface waters (2 m) sampled on the GN01 transect in 2015.
fig. S6. Radium-228 activities in surface waters (7 m) on the GIPY11 transect in 2007, measured
by Rutgers van der Loeff et al. (16).
fig. S7. Model of 228Ra and 228Th activities.
fig. S8. Inventory of 228Ra in the top 500 m at each of the stations where water column
samples were collected and the bottom depth was ≥1000 m.
fig. S9. Dissolved 228Ra activities measured in the Mackenzie River.
fig. S10. Dissolved 228Ra activities in the Mackenzie River estuary (East Channel).
fig. S11. Satellite-derived record of open water days.
fig. S12. Dissolved 226Ra activities in surface water (<50 m) above 85°N as a function of the
fraction of meteoric water in each sample.
fig. S13. Surface water (<15 m) activities of 226Ra from GN01 (circles) shown along with
activities of 226Ra measured on historical expeditions in the Arctic.
table S1. Locations of stations used to determine the surface water 228Ra inventory.
table S2. Activities of 228Ra and 226Ra measured in ice-rafted sediments and melted ice.
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