44 research outputs found

    Synergistic action between a synthetic cannabinoid compound and tramadol in neuropathic pain rats

    Get PDF
    In the present study the interaction of cannabinoid, PhAR-DBH-Me [(R,Z)-18-((1S,4S)-5-methyl-2,5-diazabicyclo[2.2.1]heptan-2-yl)-18-oxooctadec-9-en-7-ylphenylacetate] and tramadol in two neuropathy models, as well as their possible toxic effects, was analyzed. The antiallodynic effect of PhAR-DBH-Me, tramadol, or their combination, were evaluated in neuropathic rats. Furthermore, the effective dose 35 (as the 35 % of the antiallodynic effect) was calculated from the maximum effect of each drug. Moreover, the isobolographic analysis was performed to determine the type of interaction between the drugs. A plasma acute toxicity study was carried out to assess the hepatic, renal, and heart functions after an individual or combined administration of the drugs, as well as histology using the hematoxylin-eosin or Masson-trichome method. PhAR-DBH-Me, tramadol, and their combination produced an antiallodynic effect on spinal nerve ligation (SNL) and cisplatin-induced neuropathic pain in rats. Moreover, PhAR-DBH-Me and tramadol combination showed a synergistic interaction in neuropathic pain rats induced by SNL but not for cisplatin-induced neuropathy. On the other hand, changes in renal and hepatic functions were not observed. Likewise, analysis of liver, kidney and heart histology showed no alterations compared with controls. Results show that the combination of PhAR-DBH-Me and tramadol attenuates the allodynia in SNL rats; the acute toxicology analysis suggests that this combination could be considered safe in administered doses

    G protein-coupled estrogen receptor activation by bisphenol-A disrupts the protection from apoptosis conferred by the estrogen receptors ERα and ERβ in pancreatic beta cells

    Get PDF
    17β-estradiol protects pancreatic β-cells from apoptosis via the estrogen receptors ERα, ERβ and GPER. Conversely, the endocrine disruptor bisphenol-A (BPA), which exerts multiple effects in this cell type via the same estrogen receptors, increased basal apoptosis. The molecular-initiated events that trigger these opposite actions have yet to be identified. We demonstrated that combined genetic downregulation and pharmacological blockade of each estrogen receptor increased apoptosis to a different extent. The increase in apoptosis induced by BPA was diminished by the pharmacological blockade or the genetic silencing of GPER, and it was partially reproduced by the GPER agonist G1. BPA and G1-induced apoptosis were abolished upon pharmacological inhibition, silencing of ERα and ERβ, or in dispersed islet cells from ERβ knockout (BERKO) mice. However, the ERα and ERβ agonists PPT and DPN, respectively, had no effect on beta cell viability. To exert their biological actions, ERα and ERβ form homodimers and heterodimers. Molecular dynamics simulations together with proximity ligand assays and coimmunoprecipitation experiments indicated that the interaction of BPA with ERα and ERβ as well as GPER activation by G1 decreased ERαβ heterodimers. We propose that ERαβ heterodimers play an antiapoptotic role in beta cells and that BPA- and G1-induced decreases in ERαβ heterodimers lead to beta cell apoptosis. Unveiling how different estrogenic chemicals affect the crosstalk among estrogen receptors should help to identify diabetogenic endocrine disruptors.This work was supported by Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) grants BPU2017-86579-R (AN), PID2020-117294RB-I00 (AN, JM-P), Generalitat Valenciana PROMETEO II/2020/006 (AN) and European Union’s Horizon 2020 research and innovation programme under grant agreement GOLIATH No. 825489 (AN). Author laboratories hold grants from Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación y Fondo Europeo de Desarrollo Regional (FEDER) RTI2018-096724-B-C21 (J-AE) and PID2020-117569RA-I00 (LM). PROMETEO/2016/006 (J-AE) and SEJI/2018/023 (LM) supported by Generalitat Valenciana, Spain. Robert A. Welch Foundation (grant E-0004) (J-AG). CIBERDEM is an initiative of the Instituto de Salud Carlos III

    Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism

    Get PDF
    Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols

    Synthesis and modification of the Amyloid peptide sequence 37-42 of Aβ42 (AβPP): Efficient synthesis of N-methylated peptides, expanding the toolsfor peptide research

    No full text
    [EN] We report the synthesis and characterization of N-alkyl modified peptides by efficient coupling of N-methyl amino acids in solution phase. As a model peptide, the segment 37-42 (GGVVIA) of the Aβ-42 amyloid peptide derived from the amyloid precursor protein (Aβ-PP) was chosen. This peptide and its derivatives with N-methyl groups on Val40 and Ile41 residues were synthesized and character-ized. Because the synthesis was performed in solution-phase, the pro-cedure can be easily scaled up for the production of larger amounts of the peptides described in this work or any linear N-methyl peptide with potential therapeutic application.[ES] Se describe aquí la síntesis y caracterización de péptidos N-alquil modificados por acoplamiento eficiente en solución de N-Me-til aminoácidos. Se eligió como péptido modelo el segmento de 37-42 (GGVVIA) del péptido amiloide Aβ-42 derivado de la proteína pre-cursora de amiloide (Aβ-PP). Este péptido y sus derivados con grupos N-metilo en los residuos Val40 y Ile41 fueron sintetizados y caracteri-zados. Dado que ésta síntesis se realizó en solución, el procedimiento puede escalarse fácilmente y producir cantidades suficientes de los péptidos descritos, pudiendo aplicar ésta técnica en otros péptidos N-metilados lineales con posible potencial aplicación terapéutica.We are grateful to CONACYT for financial support (Project CB2010/151875); for scholarship to M.E.R-V. A. B. thanks the Plan Nacional de Investigación, MINECO, Spain and FSE funds for generous support through grant SAF2013-48399-R and Laboratorio Nacional de Estructura de Macromoléculas (LANEM, CONACyT 251613).Peer Reviewe

    The chemistry of soap and some applications

    No full text
    Tema del mesEste artículo describe las características más importantes de la estructura, origen y fabricación del jabón. También se refiere a su evolución histórica y a algunas de sus aplicaciones.This paper describes the most important features of the structure, origin, and manufacture of soap and some of its uses today and throughout its history

    In Vitro Assays to Identify Metabolism-Disrupting Chemicals with Diabetogenic Activity in a Human Pancreatic β-Cell Model

    No full text
    There is a need to develop identification tests for Metabolism Disrupting Chemicals (MDCs) with diabetogenic activity. Here we used the human EndoC-βH1 β-cell line, the rat β-cell line INS-1E and dispersed mouse islet cells to assess the effects of endocrine disruptors on cell viability and glucose-stimulated insulin secretion (GSIS). We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM). Bisphenol-A (BPA) and tributyltin (TBT) were used as controls while four other chemicals, namely perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS) and dichlorodiphenyldichloroethylene (DDE), were used as “unknowns”. Regarding cell viability, BPA and TBT increased cell death as previously observed. Their mode of action involved the activation of estrogen receptors and PPARγ, respectively. ROS production was a consistent key event in BPA-and TBT-treated cells. None of the other MDCs tested modified viability or ROS production. Concerning GSIS, TBT increased insulin secretion while BPA produced no effects. PFOA decreased GSIS, suggesting that this chemical could be a “new” diabetogenic agent. Our results indicate that the EndoC-βH1 cell line is a suitable human β-cell model for testing diabetogenic MDCs. Optimization of the test methods proposed here could be incorporated into a set of protocols for the identification of MDCs

    Synergistic action between a synthetic cannabinoid compound and tramadol in neuropathic pain rats

    No full text
    In the present study the interaction of cannabinoid, PhAR-DBH-Me [(R, Z)-18-((1S,4S)-5-methyl-2,5-diazabicyclo[2.2.1]heptan-2-yl)-18-oxooctadec-9-en-7-ylphenyl-acetate] and tramadol in two neuropathy models, as well as their possible toxic effects, was analyzed. The anti-allodynic effect of PhAR-DBH-Me, tramadol, or their combination, were evaluated in neuropathic rats. Furthermore, the effective dose 35 (as the 35 % of the anti allodynic effect) was calculated from the maximum effect of each drug. Moreover, the isobolographic analysis was performed to determine the type of interaction between the drugs. A plasma acute toxicity study was carried out to assess the hepatic, renal, and heart functions after an individual or combined administration of the drugs, as well as histology using the hematoxylin-eosin or Masson-trichome method. PhAR-DBH-Me, tramadol, and their combination produced an antiallodynic effect on spinal nerve ligation (SNL) and cisplatin-induced neuropathic pain in rats. Moreover, PhAR-DBH-Me and tramadol combination showed a synergistic interaction in neuropathic pain rats induced by SNL but not for cisplatin-induced neuropathy. On the other hand, changes in renal and hepatic functions were not observed. Likewise, analysis of liver, kidney and heart histology showed no alterations compared with controls. Results show that the combination of PhAR-DBH-Me and tramadol attenuates the allodynia in SNL rats; the acute toxicology analysis suggests that this combination could be considered safe in administered doses
    corecore