11,995 research outputs found

    Critical behavior of ferromagnetic pure and random diluted nanoparticles with competing interactions: variational and Monte Carlo approaches

    Get PDF
    The magnetic properties and critical behavior of both ferromagnetic pure and metallic nanoparticles having concurrently atomic disorder, dilution and competing interactions, are studied in the framework of an Ising model. We have used both the free energy variational principle based on the Bogoliubov inequality and Monte Carlo simulation. As a case of study for random diluted nanoparticles we have considered the Fe0.5_{0.5}Mn0.1_{0.1}Al0.4_{0.4} alloy characterized for exhibiting, under bulk conditions, low temperature reentrant spin glass (RSG) behavior and for which experimental and simulation results are available. Our results allow concluding that the variational model is successful in reproducing features of the particle size dependence of the Curie temperature for both pure and random diluted particles. In this last case, low temperature magnetization reduction was consistent with the same type of RSG behavior observed in bulk in accordance with the Almeida-Thouless line at low fields and a linear dependence of the freezing temperature with the reciprocal of the particle diameter was also obtained. Computation of the correlation length critical exponent yielded the values ν=0.926±0.004\nu=0.926\pm 0.004 via Bogoliubov andν=0.71±0.04 \nu =0.71\pm 0.04 via Monte Carlo. This fact indicates that even though thermodynamical models can be indeed used in the study of nanostructures and they can reproduce experimental features, special attention must be paid regarding critical behavior. From both approaches, differences in the ν\nu exponent with respect to the pure Ising model agree with Harris and Fisher arguments.Comment: 11 pages, 11 figures. Submitted to Phys. Rev.

    A general framework for nonholonomic mechanics: Nonholonomic Systems on Lie affgebroids

    Get PDF
    This paper presents a geometric description of Lagrangian and Hamiltonian systems on Lie affgebroids subject to affine nonholonomic constraints. We define the notion of nonholonomically constrained system, and characterize regularity conditions that guarantee that the dynamics of the system can be obtained as a suitable projection of the unconstrained dynamics. It is shown that one can define an almost aff-Poisson bracket on the constraint AV-bundle, which plays a prominent role in the description of nonholonomic dynamics. Moreover, these developments give a general description of nonholonomic systems and the unified treatment permits to study nonholonomic systems after or before reduction in the same framework. Also, it is not necessary to distinguish between linear or affine constraints and the methods are valid for explicitly time-dependent systems.Comment: 50 page

    Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 mu m

    Get PDF
    The authors report a direct measurement of the absorption dynamics in an InAs p-i-n ridge waveguide quantum dot modulator. The carrier escape mechanisms are investigated via subpicosecond pump-probe measurements at room temperature, under reverse bias conditions. The optical pulses employed are degenerate in wavelength with the quantum dot ground state transition at 1.28 mu m. The absorption change recovers with characteristic times ranging from 62 ps (0 V) to similar to 700 fs (-10 V), showing a decrease of nearly two orders of magnitude. The authors show that at low applied fields, this recovery is attributed to thermionic emission while for higher applied fields, tunneling becomes the dominant mechanism. (c) 2006 American Institute of Physics.</p

    Luján (provincia de Buenos Aires, Argentina): imagen y destino turístico. Contribución al análisis de una perspectiva el patrimonio territorial

    Get PDF
    XII Coloquio de Geografía del Turismo, Ocio y Recreación de la Asociación de Geógrafos Españoles. Colmenarejo (Madrid), del 17 al 19 de junio de 2010
    • …
    corecore