380 research outputs found

    Site Response of Organic Soils

    Get PDF
    A primary source of uncertainty in any evaluation of the seismic stability of the Sacramento-San Joaquin Delta levee system is the site response characteristics of the shallow organic soils that commonly underlay the levees. This paper provides an overview of recent research on the site response characteristics of organic soils using centrifuge and numerical modeling. The centrifuge modeling effort included the development of techniques to measure the shear wave velocity profile for a centrifuge model while in-flight. One-dimensional site response analyses using an equivalent linear procedure were performed with the measured shear wave velocity profiles and the modulus reduction and damping relationships determined from prior laboratory studies. Good agreement was obtained between the numerical simulations and the centrifuge model recordings

    Analysis of Three Bridges That Exhibited Various Performance Levels in Liquefied and Laterally Spreading Ground

    Full text link
    Three bridges supported on deep foundations that exhibited various performance levels in liquefied and laterally spreading ground are analyzed using a beam on nonlinear Winkler foundation method. The performance levels were (1) no measurable foundation deformation, (2) moderate damage, and (3) collapse. Analyses are first performed using the best available information regarding ground motions and free-field lateral spreading surface displacements. Predictions closely match observations when the inputs are well known. The cases are subsequently reanalyzed using a probabilistic forward prediction that incorporates uncertainty in the ground motion, liquefaction triggering evaluation, lateral spreading surface displacement, and structural response. Significant differences in lateral spreading displacements estimated by different methods introduced significant dispersion into predictions of structural response for cases of poor performance in which the piles moved with the spreading soil but had little influence for cases with good performance where the liquefied soil spread around a stiffpile foundation. © 2013 American Society of Civil Engineers

    Molecular dynamics simulations suggest changes in electrostatic interactions as a potential mechanism through which serine phosphorylation inhibits DNA Polymerase β’s activity

    Get PDF
    DNA polymerase ß is a 39 kDa enzyme that is a major component of Base Excision Repair in human cells. The enzyme comprises two major domains, a 31 kDa domain responsible for the polymerase activity and an 8 kDa domain, which bind ssDNA and has a deoxyribose phosphate (dRP) lyase activity. DNA polymerase ß was shown to be phosphorylated in vitro with protein kinase C (PKC) at serines 44 and 55 (S44 and S55), resulting in loss of its polymerase enzymic activity, but not its ability to bind ssDNA. In this study, we investigate the potential phosphorylation-induced structural changes for DNA polymerase ß using molecular dynamics simulations. The simulations show drastic conformational changes of the polymerase structure as a result of S44 phosphorylation. Phosphorylation-induced conformational changes transform the closed (active) enzyme structure into an open one. Further analysis of the results points to a key hydrogen bond and newly formed salt bridges as potential drivers of these structural fluctuations. The changes observed with S55/44 and S55 phosphorylation were less dramatic and the integrity of the H-bond was not compromised. Thus the phosphorylation of S44 is the major contributor to structural fluctuations that lead to loss of enzymatic activity

    Wear behaviour at 600°C of surface engineered low-alloy steel containing TiC particles

    Get PDF
    The work aimed to develop surfaces that could resist wear at high temperatures, thus achieving a prolonged component life. Surface modification of a low-alloy steel by incorporating TiC particles has been undertaken by melting the surface using a tungsten inert gas torch. The dry sliding wear behaviour at 600°C of the original and modified surfaces was compared. Microscopic examination of both surfaces showed glazed layers across the wear tracks, with differing amounts of oxide and homogeneity. Extensive wear occurred on the steel surface, which showed deformation of the wear scar tracks and a steadily increased friction coefficient. The TiC addition reduced the wear loss, coinciding with a glazed layer 33% thinner than that on the low-alloy steel sample

    Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    Get PDF
    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage

    Future Seismic Hazards in Southern California - Phase I: Implications of the 1992 Landers Earthquake Sequence

    Get PDF
    Southern California and its seismologists received a wake-up call on June 28, 1992. The largest earthquake to strike southern California in 40 years occurred near the town of Landers, located 30 km north of the San Andreas fault. It had a magnitude of 7.5 (M7.5). Three and one-half hours later, a M6.5 aftershock struck the Big Bear area 40 km (kilometers) to the west of Landers. An ad hoc working group was rapidly convened in July, 1992, to evaluate how the Landers-Big Bear earthquake sequence might affect future large earthquakes along major faults in southern California. In particular, what are the chances of large earthquakes in the next few years and how do they compare to previous estimates (such as those of the Working Group on California Earthquake Probabilities -- WGCEP, 1988)? Such an evaluation was made for central California after the Lorna Prieta earthquake of 1989 (WGCEP, 1990). The charge to the Landers ad hoc working group included analyzing the seismicity for the last several years in southern California and the new paleoseismic, geologic, and geodetic data recently available for southern California. To inform the public about the potential hazard of plausible earthquakes, the working group was also asked to map the predicted severity of ground shaking for such earthquakes compared to that from the Landers earthquake
    corecore