Oxidation of Low Valent Sulphur Compounds with Lead Tetracetate: Part III-Determination of Tri- \& Tetrathionates \& the Redox Potential of Sulphate-Trithionate System

K. A. IDIRISS, M. S. EL-MEI.IGY \& I. M. ISSA
Chemistry Department, I'aculty of Science, Assiut Lniversity, Assiut, Elypht
Received 14 September 1976; reaised 15. Februtury 1977; accipled 6 Marh 1977

Abstract

The oxidation of tri- and tetrathionate solutions with lead tetraacetate is investigated. As little as 2 mg of $\mathrm{Pb}(\mathrm{IV})$ can be estimated by potentiometric titration in glacial acetic acid medium. The direct titration of the thionate solution with Pb (IV) acetate is also satisfactory and demonstrates the feasibility of determining amounts ranging from $0.27-123 \mathrm{mg}$ and $0.5-12 \mathrm{mg}$ of $\mathrm{S}_{3} \mathrm{O}_{6}^{2-}$ and $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$ respectively. The net reactions representing the oxidation of tri- and tetrathionates with $\mathrm{Pb}(\mathrm{IV}$) acetate are given. The titrations at the optimum conditions proceed fast and exhibit a large potential change at the end-point. The formal redox potential of the SO_{4}^{2-} $S_{3} \mathrm{O}_{6}^{2-}$ system has been determined at different $p \mathrm{H}$ values. The E_{0} value obtained by extrapolation to $\mathrm{pH}=0$ is 0.71 V .

PREVIOUSLY ${ }^{1,2}$, we studied the reaction between lead tetraacctate and bisulphite, thiosulphate and metabisulphite. The quantitative course of the reactions were applicd for the direct potentiometric determination of the lead(IV) reagent. The estimation of polythiorates have been the subject of few titrimetric investigetions s^{3-7}. In the present study, the reaction with lead tetraacetate has been applied for the detcrmination of tri- and tetrathionates. The oxidation reactions of the two sulphur compounds are discussed. Attempts have also been made to evaluate the redox potential of the sulphate/frithionate system.

Materials and Methods

Pb^{2+}-free solution of lead tetracetate (0.05 M) was prepared by a method similar to that of Berka et al. ${ }^{8}$ and standardized potentiometrically againsi standard $\mathrm{Fe}(\mathrm{II})$ sulphate solution in $1 N$ sulphuric acid. Sodium tri- :nd tetrathionate solutions were prepared from anolytical grade reagents and standerdized, by reaction with mercuric chloride ${ }^{5}$. Concentrated solutions of $\mathrm{S}_{3} \mathrm{O}_{6}^{2-}$ or $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}(>0.05 M)$ were found unsatisfactory due to decomposition by atmospheric oxygen. The thionate content of diluted solutions did not alter appreciably when preserved in a well stoppered vessel. Testing of solutions having $\leqslant 0.04 M$ concentration gave no evidence for the production of SO_{2} or sulphurous acid when allowed to stand for several diys. Other reagents were prepared using the analar products and doubly distilled water.

The potentiometric set-up consisted of a titration half-cell and SCE as the reference. A platinum rod was used as indicator electrode. When the thionate solution was used as the tilrant, the reference half-cell wis connected to the cell with KCl (sat.) and NaOAc (sat.)-acetic acid (glacial) salt bridges. The e.m.f. of the titration cell was
measured by a direct rea ding millivoitmeter of type radiometer (Mb 28).
Direct titration - A me:sured volume of thionate solution was placed in the titration cell and mixed, if required, with the appropriate amount of $1 M$ $\mathrm{H}_{2} \mathrm{SO}_{4}$. The volume wes mede up to 100 ml with doubly distill (d water, and then titrated with lead (IV) acetate at room tomperature ($\sim 25^{\circ}$).

Reverse titration-A known volume of the lead (IV) reagent solution wis plicud in the titration cell ard diluted to 50 ml with glacial acetic acid. The solution was then titrated with the thionate semple solution.

Determination of the formal redox potential - The cells of the types (A) and (B) were used for the determination of the formal redox potentials.

(A)

(B)

The potentials, E_{H}, of both $\mathrm{Pb}(\mathrm{IV}) / \mathrm{Pb}(\mathrm{II})$ and $\mathrm{SO}_{4}^{2-} / \mathrm{S}_{3} \mathrm{O}_{6}^{2-}$ systems were measured at different $p \mathrm{H}$ values. Systems he ving the composition 1:1 [Ox]/ [Red] molar ratio were examined. The electrodes were immersed in the cell for sufficient time $(\sim 1 \mathrm{hr})$ before the $E_{I I}$ measurements. The E° values were obtained by extrapolation the E_{H} vs $p \mathrm{H}$ plots to $p \mathrm{H}=0$.

Results and Discussion

Determination of Trithionate

Titration of trithionate with lead tetraacetate As shown in Fig. 1, the end point is cherecterized by a single large inflection ($\sim 100 \mathrm{mV} / 0.02 \mathrm{ml}$ of
titrant). The volume of lead(IV) acetate consumed at the end-point indicate that the reac ion procecds in accordance with Eq. (1).

$$
\begin{equation*}
\left.4 \mathrm{~Pb}^{4+}+\mathrm{S}_{3} \mathrm{O}_{6}^{2-}+6 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{Pl}\right)^{2+}+3 \mathrm{SO}_{4}^{2-}+12 \mathrm{H}^{+} \tag{1}
\end{equation*}
$$

which is be sed on the two partial rec cions (2 ad 3)
$\mathrm{S}_{3} \mathrm{O}_{6}^{2-}+6 \mathrm{H}_{2} \mathrm{O}=3 \mathrm{SO}_{4}^{2-}+8 e^{-}+12 \mathrm{H}^{+}$
$\mathrm{Pb}(\mathrm{OAc})_{4}+2 e^{-}+4 \mathrm{H}^{+}=\mathrm{Pb}^{2+}+4 \mathrm{AcOH}$
The formal redox potenticl of the $\mathrm{Pb}(\mathrm{IV}) / \mathrm{Pb}(\mathrm{II})$ system have been thoroughly studied in aceic acid ${ }^{9}$ as well as in dilute mincral a cids ${ }^{9,10}$. On the other hand, the mechanism of the reacion

$$
\mathrm{S}_{3} \mathrm{O}_{6}^{2-}+3 \mathrm{H}_{2} \mathrm{O}=3 \mathrm{H}_{2} \mathrm{SO}_{3}+2 e^{-}\left(E^{\circ}=-0.3 \mathrm{~V}\right)
$$

is no doubt compicated and the overall poten inl is probably not very significant ${ }^{11}$. Any oxidizing agent capable of oxidizing the trithioncte will be sufficienily strong io oxidize the sulphurous acid to sulphate. This is appurently the case when trithionate is oxidized with $\mathrm{Pb}(\mathrm{IV})$ acetate. The
formation of sulphate is confirmed, however, by an absorption band at 310 nm .

The oxidation of trithionate with the lead(IV) reagent proceeds quontitatively in accordence with reaction (1) when the process is carricd out at $p \mathrm{H}$ 3-5-5. It is, however, iacessary for these titrations that the final $p H$ (at the end-point) of the solution to be titrated should be $\geqslant 2 \cdot 5$. Decomposition of trithionate to yield SO_{2} does not take place ur der these corditiors. This was confirmed experimentally by doing the itration in a closed system and testirg the atmosphere above the titrated solution for SO_{2}, which was found to be absent. The fitration proceeds rapidly at the start but is the end-point approches the electrode equilibration becomes less rapid needing $\sim 2 \mathrm{~min}$ after the addition of titront. This is readily understindable from the liberetion of H^{+}ions according to reacion (1). At $p \mathrm{H} \geqslant 5 \cdot 5$ trithionate is slowly hydrolysed and the results obtaincd are not reliable. The method hes proved successful for titrating amounts of $\mathrm{S}_{3} \mathrm{O}_{6}^{2-}$

Fig. 1 - (A) Direct titration of trithionate with $\mathrm{Pb}\left(\mathrm{IV}\right.$) acetate [Titration of (a) 1 ml of $2 \cdot 5 \times 10^{-2} M$ $\mathrm{S}_{3} \mathrm{O}_{6}^{2-}$ with $0.070 N \mathrm{~Pb}(\mathrm{OAc})_{2}$ at $p \mathrm{H} 4.5$; (b) 1 ml of $2.5 \times 10^{-2} M \mathrm{~S}_{3} \mathrm{O}_{6}^{2-}$ with $0.035 N \mathrm{~Pb}(\mathrm{OAc})_{4}$ at $p \mathrm{H} 4$; (c) 2 ml of $6.2 \times 10^{-3} M$ $\mathrm{S}_{3} \mathrm{O}_{6}^{2-}$ with $0.0058 \mathrm{~N} \mathrm{~Pb}(\mathrm{OAc})_{4}$ at $p \mathrm{H} 4.5$; (d) 2 ml of $2.1 \times 10^{-3} M \mathrm{~S}_{3} \mathrm{O}_{6}^{2-}$ with $0.0058 \mathrm{~N} \mathrm{~Pb}(\mathrm{OAc})_{4}$ at $p \mathrm{H} 4.8$; (e) 1 ml of $2.1 \times 10^{-3} M \mathrm{~S}_{3} \mathrm{O}_{6}^{2-}$ with $0.0035 \mathrm{~N} \mathrm{~Pb}(\mathrm{OAc})_{4}$ at $p \mathrm{H} 3.5$; and (f) 2 ml of $2.1 \times 10^{-3} \mathrm{M}^{2} \mathrm{~S}_{3} \mathrm{O}_{6}^{2-}$ with $0.0035 \mathrm{~N} \mathrm{~Pb}(\mathrm{OAc})_{4}$ at $p \mathrm{H} 2.2$]. (B) Reverse titration of $\mathrm{Pb}(\mathrm{IV})$ acetate with trithionate [Titration of (a) $2 \mathrm{ml} 0.0175 \mathrm{~N} \quad \mathrm{~Pb}(\mathrm{OAc})_{4}$ with $2.1 \times 10^{-3} M \mathrm{~S}_{3} \mathrm{O}_{6}^{2-}$; (b) $5 \mathrm{ml} 0.0175 \mathrm{NPb}(\mathrm{OAc})_{4}$ with $2.1 \times 10^{-3} M \mathrm{~S}_{3} \mathrm{O}_{6}^{2-}$; (c) $5 \mathrm{ml} 0.070 \mathrm{~N} \mathrm{~Pb}(\mathrm{OAc})_{4}$ with $6.2 \times 10^{-3} M$ $\mathrm{S}_{3} \mathrm{O}_{6}^{2-}$; and (d) $5 \mathrm{ml} 0.0087 \mathrm{~N} \mathrm{~Pb}(\mathrm{OAc})_{4}$ with $2.1 \times 10^{-3} \mathrm{M} \mathrm{S}_{3} \mathrm{O}_{6}^{2-}$]
corresponding to $0 \cdot 13-65 \mathrm{mg}$ sulphur, the error being generally less than 0.5%.

Formal redox potential of $\mathrm{SO}_{4}^{2-} / \mathrm{S}_{3} \mathrm{O}_{6}^{2-}$ system - The formal redox potentials were determined from potentials of the cells (A) and (B). The potentials were measured in the $p \mathrm{H}$ range $2-4 \cdot 5$. The values of E° for the $\mathrm{SO}_{4}^{2-} / \mathrm{S}_{3} \mathrm{O}_{6}^{2-}$ and $\mathrm{Pb}^{4+} / \mathrm{Pb}^{2+}$ t wo half-cells were determined from the Nernst equation (4), neglecting activity coefficients

$$
\begin{equation*}
E_{H}=E^{\circ}+\frac{R T}{n F} \ln \frac{[\mathrm{Ox}]^{n}}{[\mathrm{Red}]^{m}}+\frac{R T}{n \bar{F}} \ln \left[\mathrm{H}^{+}\right]^{x} \tag{4}
\end{equation*}
$$

where X represents the number of H^{+}ions and n and m are the number of molecules of oxidant and reductant in the half-cell reactions

Hence, for the reaction

$$
\begin{gather*}
\mathrm{Pb}^{4+}+2 e^{-}=\mathrm{Pb}^{2+} \\
{ }_{I} E_{H}={ }_{1} E^{\circ}+\frac{0.0591}{2} \log \left[\frac{\left[\mathrm{~Pb}^{4+}\right]}{\left[\mathrm{Pb}^{2+}\right]}-\frac{0 \cdot 0591}{2} X_{I} p \mathrm{H}\right. \tag{5}
\end{gather*}
$$

and for the reaction

$$
\begin{equation*}
\mathrm{S}_{3} \mathrm{O}_{6}^{2-}+6 \mathrm{H}_{2} \mathrm{O}=3 \mathrm{SO}_{4}^{2-}+8 e^{-}+12 \mathrm{H}^{+} \tag{6}
\end{equation*}
$$

${ }_{I I} E_{H}={ }_{I I} E^{\circ}+\frac{0.0591}{8} \log \frac{\left[\mathrm{SO}_{4}^{-2}\right]}{\left[\mathrm{S}_{3} \mathrm{O}_{6}^{-2}\right]}-\frac{0.0591}{8} X_{I I} p \mathrm{H}$
where X_{I} and $X_{I I}$ represent the numbers of H^{+}ions involved in the two half-cell reactions.

Plots of E_{H} vs $p \mathrm{H}$ are linear (Fig. 2A) with slopes of 0.115 and 0.075 for the $\mathrm{Pb}^{4+} / \mathrm{Pb}^{2+}$ and $\mathrm{SO}_{4}^{2-} / \mathrm{S}_{3} \mathrm{O}_{6}^{2-}$ systems respectively. On extrapolation to $p \mathrm{H}=0$, the curves give E_{0} values of 1.32 and 0.71 V respectively. The formal redox potential $\left(E_{f}\right)_{x}$, for the two systems at any required $p \mathrm{H}(x)$, con be deduced from Eqs. (5) and (6) with the krowledge of E_{0} value at $p \mathrm{H}=0$.

It is possible to calculate the valucs of the equilibrium constant (K) and the extent of completion (α) for reaction (1) from a knowledge of the
redox potentials of the systems urider investigation for $\log K$ is given by Eq. (7) where Z is the number $\log K=\frac{\left({ }_{1} E-{ }_{\mathrm{II}} E\right) Z}{0.0591}$ and $\alpha=K^{1 / n_{1}+n_{2}}$
of electrons involved in the overall reaction (8 in this cisc) and n_{1} and n_{2} are the oxidation-number changes for both systems. The results, obtained for K and α, show that the reaction is essentially quantitative at $p \mathrm{H}$ 2.5-4.5.

Since the slope of E_{H} vs $p H$ plot is equal to $0.0591 X / n$, where X is the number of H^{+}ions perticipating in the reaction then, for the $\mathrm{Pb}^{4+} / \mathrm{Pb}^{2+}$ system X_{I} is 4 and for the $\mathrm{SO}_{4}^{2-} / \mathrm{S}_{3} \mathrm{O}_{6}^{2-}$ system $X_{\text {II }}$ is 12. Accordingly, the following equations (8 and 9) may be written to represent the reactions.
$\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}+2 e^{-}+4 \mathrm{H}^{+}=\mathrm{Pb}^{2+}+4 \mathrm{CH}_{3} \mathrm{COOH}$
$3 \mathrm{SO}_{4}^{2-}+12 \mathrm{H}^{+}+8 e^{-}=\mathrm{S}_{3} \mathrm{O}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
The overall reaction is in accordarce with Eq. (1). The validity of the latter equation is verificd by determining the slope of the $E_{\text {cell }}$ vs $p H$ curve (Fig. 2B) for the overall cell reaction. According to Eqs. (5) and (6), when $\mathrm{Pb}^{4+} / \mathrm{Pb}^{2+}=\mathrm{SO}_{4}^{2-} / \mathrm{S}_{3} \mathrm{O}_{6}^{2-}$ $=1$, then $E_{\text {cell }}$ is given by Eq. (10)
$E_{\text {cell }}=E_{0}+\frac{0.0591}{8}\left(2 X_{\mathrm{II}}-X_{\mathrm{I}}\right) p \mathrm{H}$
Substituting the values of $X_{\mathrm{I}}=4$ and $X_{\text {II }}=12$ in Eq. (10), we get Eq. (11)
$E_{\text {cell }}=E_{0}+\frac{0.0591 \times 20}{8} p \mathrm{H}=E_{0}+0.1477 p \mathrm{H}$
The slope found experimentally was $0 \cdot 149$, in excellent accordance with that expected (cf. Fig. 2).

Titration of $P b(\mathrm{IV})$ acetate with trithionate - The reverse titration of $\mathrm{Pb}(\mathrm{IV})$ acetate with $\mathrm{S}_{3} \mathrm{O}_{6}^{2-}$ is characterized by a single large inflection at which 8 equivalents of trithionate have been consumed

Fig. $2-$ (A) E_{H} vs $p \mathrm{H}$ plots and (B) Ecell vs $p \mathrm{H}$ plots

Fig. 3-Direct titration of $\mathrm{Pb}(\mathrm{IV})$ acetate with tetrathionate [Titration of (a) $25 \mathrm{ml} 0.009 \mathrm{~N} \mathrm{~Pb}(\mathrm{OAc})_{4}$ with 1.13 $\times 10^{-2} \mathrm{M} \mathrm{S}_{4} \mathrm{O}_{6}^{2-}$; (b) $15 \mathrm{ml} 0.009 \mathrm{~N} \mathrm{~Pb}(\mathrm{OAc})_{4}$ with $1.13 \times 10^{-2} \mathrm{M}$ $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$; (c) $10 \mathrm{ml} 0.018 \mathrm{~N} \mathrm{~Pb}(\mathrm{OAC})_{4}$ with $1.13 \times 10^{-2} \mathrm{M} \mathrm{S}_{4} \mathrm{O}_{6}^{2-}$; (d) $15 \mathrm{ml} \quad 0.072 \mathrm{~N} \quad \mathrm{~Pb}(\mathrm{OAc})_{4}$ with $3.39 \times 10^{-2} \mathrm{M} \quad \mathrm{S}_{4} \mathrm{O}_{6}^{2-}$; (e) $2 \mathrm{ml} 0.072 \mathrm{~N} \mathrm{~Pb}(\mathrm{OAc})_{4}$ with $5.70 \times 10^{-3} M \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}$; and (f) $4 \mathrm{ml} 0.072 \mathrm{~N} \mathrm{~Pb}(\mathrm{OAc})_{4}$ with $1.13 \times 10^{-2} \mathrm{M} \mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
(Fig. 1B). The inflection at the end-point decreases as the concentration of $\mathrm{Pb}(\mathrm{OAc})_{4}$ solution increases. The method can be applied successfully for titrating $2 \cdot 2-40 \mathrm{mg}$ of Pb (IV).

Determination of Tetrathionate

Direct titration of $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$ with $\mathrm{Pb}(I V)$ acetate The results obtained indicate that the reaction
appears to proceed quantitatively in accordance with Eq. (12)

$$
\begin{gather*}
5 \mathrm{~Pb}(\mathrm{OAc})_{4}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}+6 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 5 \mathrm{~Pb}(\mathrm{OAc})_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{6}^{2-}+ \\
10 \mathrm{AcOH}+2 \mathrm{H}^{+} \tag{12}
\end{gather*}
$$

which is based on the two partial reactiors (13and14)
$\mathrm{S}_{4} \mathrm{O}_{6}^{2-}+6 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{~S}_{2} \mathrm{O}_{6}^{2-}+12 \mathrm{H}^{+}+10 e^{-}$
$5 \mathrm{~Pb}^{4+}+10 e^{-}=5 \mathrm{~Pb}^{2+}$
The titration curves show one reason ble inflection which amounts to $80 \mathrm{mV} / 0.02 \mathrm{ml}$ titrant (Fig. 3). Amounts of tetrathionate solution containing as low as 0.28 mg of sulphur can be titrated successfully in this way provided that the final $p \mathrm{H}$ of solution (at the end-point) is between 2 and 4. The formation of dithionate as an oxidation product is confirmed by recording the absorption spectra of the titrated solution both prior to and at the equivalence point. The solution exhibits in each case an absorption band at 240 nm characterizing $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$. The formation of $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$ is verified by precipitating the $\mathrm{Pb}(\mathrm{II})$ formed, at the end-point, as PbSO_{4} and estimation of $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$ in the filtrate by analysis by the method of Murthy ${ }^{12}$.

Indirect titration of $\mathrm{Pb}(\mathrm{IV})$ acetate with $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$ The results obtained on titrating $\mathrm{Pb}(\mathrm{IV})$ acetate corresponding to $0.9-75 \mathrm{mg}$ of lead are in accordance with Eq. (12). The titration curves have a single sharp inflection at the end-point, the error being generally less than 1%.

References

1. Issa, I. M., El-Meligy, M. S. \& Idriss, K. A., Indian J. Chem., 12 (1974), 877.
2. Idriss, K. A., Issa, I. M. \& El-Meligy, M. S., Indian J. Chem., 14A (1976), 195.
3. Kurtenacker, A. \& Bittner, K., Z. anorg., allgem. Chem., 142 (1925), 119.
4. Lange, R. \& Kurtenacher, A., Z. anal. Chem., 123 (1942), 169.
5. JAY, R. R., Analyt. Chem., 25 (1953), 288.
6. Kaushik, K. L. \& Rugendra, P., Indian J. Chem., 8 (1970), 462.
7. Idriss, K. A., Issa, I. M. \& Mahmoud, M. R., Can. J. Chem. (in press).
8. Berka, A., Dvorak, V., Nemec, I. \& Zyka, J., Anal. Chim. Acta, 23 (1960), 830.
9. Tomicek, O. \& Valcha, J., Chem. Listy, 44 (1950), 383.
10. Berka, A., Vulterin, J. \& Zyka, J., Newer yedox titrants (Pergamon Press, London), 1965, 79.
11. Latimer, W. M., Oxidation potentials (Prentice-Hall, New York), 1959, 78.
12. Murthy, A. R. V., Curr. Sci., 22 (1953), 371.
