17 research outputs found
Tailored implementation of national recommendations on fall prevention among older adults in municipalities in Norway (FALLPREVENT trial): a study protocol for a cluster-randomised trial
Background: Despite substantial research evidence indicating the effectiveness of a range of interventions to pre- vent falls, uptake into routine clinical practice has been limited by several implementation challenges. The complexity of fall prevention in municipality health care underlines the importance of flexible implementation strategies tailored both to general determinants of fall prevention and to local contexts. This cluster-randomised trial (RCT) investigates the effectiveness of a tailored intervention to implement national recommendations on fall prevention among older home-dwelling adults compared to usual practice on adherence to the recommendations in health professionals.Methods: Twenty-five municipalities from four regions in Norway will be randomised to intervention or control arms. Each municipality cluster will recruit up to 30 health professionals to participate in the study as responders. The tailored implementation intervention comprises four components: (1) identifying local structures for implementation, (2) establishing a resource team from different professions and levels, (3) promoting knowledge on implementation and fall prevention and (4) supporting the implementation process. Each of these components includes several implementation activities. The Consolidated Framework for Implementation Research (CFIR) will be used to categorise determinants of the implementation process and the Expert Recommendations for Implementing Change (ERIC) will guide the matching of barriers to implementation strategies. The primary outcome measure for the study will be health professionals’ adherence to the national recommendations on fall prevention measured by a questionnaire. Secondary outcomes include injurious falls, the feasibility of the intervention, the experiences of the implementation process and intervention costs. Measurements will be carried out at baseline in August 2023, post-intervention in May 2024 and at a follow-up in November 2024.Discussion: This study will provide evidence on the effectiveness, intervention costs and underlying processes of change of tailored implementation of evidence-based fall prevention recommendations.Trial registration: The trial is registered in the Open Science Registry: https://doi.org/10.17605/OSF.IO/JQ9T5. Regis- tered: March 03, 2023.<br/
Increased CSF levels of aromatic amino acids in hip fracture patients with delirium suggests higher monoaminergic activity
textabstractBackground: To examine whether delirium in hip fracture patients was associated with changes in the levels of amino acids and/or monoamine metabolites in cerebrospinal fluid (CSF) and serum. Methods: In this prospective cohort study, 77 patients admitted with an acute hip fracture to Oslo University Hospital, Norway, were studied. The concentrations of amino acids in CSF and serum were determined by high performance liquid chromatography. The patients were assessed daily for delirium by the Confusion Assessment Method (pre-operatively and post-operative day 1-5 (all) or until discharge (delirious patients)). Pre-fracture dementia status was decided by an expert panel. Serum was collected pre-operatively and CSF immediately before spinal anesthesia. Results: Fifty-three (71 %) hip fracture patients developed delirium. In hip fracture patients without dementia (n = 39), those with delirium had significantly higher CSF levels of tryptophan (40 % higher), tyrosine (60 % higher), phenylalanine (59 % higher) and the monoamine metabolite 5-hydroxyindoleacetate (23 % higher) compared to those without delirium. The same amino acids were also higher in CSF in delirious patients with dementia (n = 38). The correlations between serum and CSF amino acid levels were poor. Conclusion: Higher CSF levels of monoamine precursors in hip fracture patients with delirium suggest a higher monoaminergic activity in the central nervous system during delirium in this patient group
The Ability of Shiga Toxin-Producing Escherichia coli to Grow in Raw Cow’s Milk Stored at Low Temperatures
Despite the lack of scientific evidence, some consumers assert that raw milk is a natural food with nutritional and immunological properties superior to pasteurized milk. This has led to the increased popularity of unpasteurized cow milk (UPM) and disregard for the risks of being exposed to zoonotic infections. Dairy cattle are healthy carriers of Shiga toxin (Stx)-producing E. coli (STEC), and contaminated UPM has caused STEC outbreaks worldwide. The association between STEC, carrying the eae (E. coli attachment effacement) gene, and severe diseases is well-established. We have previously isolated four eae positive STEC isolates from two neighboring dairy farms in the Southeast of Norway. A whole genome analysis revealed that isolates from different farms exhibited nearly identical genetic profiles. To explore the risks associated with drinking UPM, we examined the ability of the isolates to produce Stx and their growth in UPM at different temperatures. All the isolates produced Stx and one of the isolates was able to propagate in UPM at 8 °C (p < 0.02). Altogether, these results highlight the risk for STEC infections associated with the consumption of UPM
Kynurenine Pathway Metabolites in the Blood and Cerebrospinal Fluid Are Associated with Human Aging
The kynurenine pathway is implicated in aging, longevity, and immune regulation, but longitudinal studies and assessment of the cerebrospinal fluid (CSF) are lacking. We investigated tryptophan (Trp) and downstream kynurenine metabolites and their associations with age and change over time in four cohorts using comprehensive, targeted metabolomics. The study included 1574 participants in two cohorts with repeated metabolite measurements (mean age at baseline 58 years ± 8 SD and 62 ± 10 SD ), 3161 community-dwelling older adults (age range 71-74 years), and 109 CSF donors (mean age 73 years ± 7 SD). In the first two cohorts, age was associated with kynurenine (Kyn), quinolinic acid (QA), and the kynurenine to tryptophan ratio (KTR), and inversely with Trp. Consistent with these findings, Kyn, QA, and KTR increased over time, whereas Trp decreased. Similarly, QA and KTR were higher in community-dwelling older adults of age 74 compared to 71, whereas Trp was lower. Kyn and QA were more strongly correlated with age in the CSF compared to serum and increased in a subset of participants with repeated CSF sampling (n = 33) over four years. We assessed associations with frailty and mortality in two cohorts. QA Hindawi Oxidative Medicine and Cellular Longevity Volume 2022, Article ID 5019752, 15 pages https://doi.org/10.1155/2022/5019752 and KTR were most strongly associated with mortality and frailty. Our study provides robust evidence of changes in tryptophan and kynurenine metabolism with human aging and supports links with adverse health outcomes. Our results suggest that aging activates the inflammation and stress-driven kynurenine pathway systemically and in the brain, but we cannot determine whether this activation is harmful or adaptive. We identified a relatively stronger age-related increase of the potentially neurotoxic end-product QA in brain.publishedVersio
Self-reported sleep relates to hippocampal atrophy over the adult lifespan – results from the Lifebrain consortium
Objectives
Poor sleep is associated with multiple age-related neurodegenerative and neuropsychiatric conditions. The hippocampus plays a special role in sleep and sleep-dependent cognition, and accelerated hippocampal atrophy is typically seen with higher age. Hence, it is critical to establish how the relationship between sleep and hippocampal volume loss unfolds across the adult lifespan.
Methods
Self-reported sleep measures and MRI-derived hippocampal volumes were obtained from 3105 cognitively normal participants (18–90 years) from major European brain studies in the Lifebrain consortium. Hippocampal volume change was estimated from 5116 MRIs from 1299 participants for whom longitudinal MRIs were available, followed up to 11 years with a mean interval of 3.3 years. Cross-sectional analyses were repeated in a sample of 21,390 participants from the UK Biobank.
Results
No cross-sectional sleep—hippocampal volume relationships were found. However, worse sleep quality, efficiency, problems, and daytime tiredness were related to greater hippocampal volume loss over time, with high scorers showing 0.22% greater annual loss than low scorers. The relationship between sleep and hippocampal atrophy did not vary across age. Simulations showed that the observed longitudinal effects were too small to be detected as age-interactions in the cross-sectional analyses.
Conclusions
Worse self-reported sleep is associated with higher rates of hippocampal volume decline across the adult lifespan. This suggests that sleep is relevant to understand individual differences in hippocampal atrophy, but limited effect sizes call for cautious interpretation
Poor self-reported sleep is related to regional cortical thinning in aging but not memory decline – results from the Lifebrain consortium
We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18–92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. “PSQI # 1 Subjective sleep quality” and “PSQI #5 Sleep disturbances” were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with “PSQI #5 Sleep disturbances” emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults