9 research outputs found

    Causes, patterns and severity of androgen excess in 487 consecutively recruited pre- and post-pubertal children

    Get PDF
    Objective Androgen excess in childhood is a common presentation and may signify sinister underlying pathology. Data describing its patterns and severity are scarce, limiting the information available for clinical decision processes. Here, we examined the differential diagnostic value of serum DHEAS, androstenedione (A4) and testosterone in childhood androgen excess. Design Retrospective review of all children undergoing serum androgen measurement at a single center over 5 years. Methods Serum A4 and testosterone were measured by tandem mass spectrometry and DHEAS by immunoassay. Patients with at least one increased androgen underwent phenotyping by clinical notes review. Results In 487 children with simultaneous DHEAS, A4 and testosterone measurements, we identified 199 with androgen excess (140 pre- and 59 post-pubertal). Premature adrenarche (PA) was the most common pre-pubertal diagnosis (61%), characterized by DHEAS excess in 85%, while A4 and testosterone were only increased in 26 and 9% respectively. PCOS was diagnosed in 40% of post-pubertal subjects, presenting equally frequent with isolated excess of DHEAS (29%) or testosterone (25%) or increases in both A4 and testosterone (25%). CAH patients (6%) predominantly had A4 excess (86%); testosterone and DHEAS were increased in 50 and 33% respectively. Concentrations increased above the two-fold upper limit of normal were mostly observed in PA for serum DHEAS (&gt;20-fold in the single case of adrenocortical carcinoma) and in CAH for serum androstenedione. Conclusions Patterns and severity of childhood androgen excess provide pointers to the underlying diagnosis and can be used to guide further investigations.</p

    International consensus on mitotane treatment in pediatric patients with adrenal cortical tumors: indications, therapy, and management of adverse effects

    No full text
    Objective: Mitotane is an important cornerstone in the treatment of pediatric adrenal cortical tumors (pACC), but experience with the drug in the pediatric age group is still limited and current practice is not guided by robust evidence. Therefore, we have compiled international consensus statements from pACC experts on mitotane indications, therapy, and management of adverse effects. Methods: A Delphi method with 3 rounds of questionnaires within the pACC expert consortium of the international network groups European Network for the Study of Adrenal Tumors pediatric working group (ENSAT-PACT) and International Consortium of pediatric adrenocortical tumors (ICPACT) was used to create 21 final consensus statements. Results: We divided the statements into 4 groups: environment, indications, therapy, and adverse effects. We reached a clear consensus for mitotane treatment for advanced pACC with stages III and IV and with incomplete resection/tumor spillage. For stage II patients, mitotane is not generally indicated. The timing of initiating mitotane therapy depends on the clinical condition of the patient and the setting of the planned therapy. We recommend a starting dose of 50 mg/kg/d (1500 mg/m2/d) which can be increased up to 4000 mg/m2/d. Blood levels should range between 14 and 20 mg/L. Duration of mitotane treatment depends on the clinical risk profile and tolerability. Mitotane treatment causes adrenal insufficiency in virtually all patients requiring glucocorticoid replacement shortly after beginning. As the spectrum of adverse effects of mitotane is wide-ranging and can be life-threatening, frequent clinical and neurological examinations (every 2-4 weeks), along with evaluation and assessment of laboratory values, are required. Conclusions: The Delphi method enabled us to propose an expert consensus statement, which may guide clinicians, further adapted by local norms and the individual patient setting. In order to generate evidence, well-constructed studies should be the focus of future efforts

    Genotype-Phenotype Analysis in Congenital Adrenal Hyperplasia due to P450 Oxidoreductase Deficiency

    No full text
    Context: P450 oxidoreductase deficiency (PORD) is a unique congenital adrenal hyperplasia variant that manifests with glucocorticoid deficiency, disordered sex development (DSD), and skeletal malformations. No comprehensive data on genotype-phenotype correlations in Caucasian patients are available. Objective: The objective of the study was to establish genotype-phenotype correlations in a large PORD cohort. Design: The design of the study was the clinical, biochemical, and genetic assessment including multiplex ligation-dependent probe amplification (MLPA) in 30 PORD patients from 11 countries. Results: We identified 23 P450 oxidoreductase (POR) mutations (14 novel) including an exonic deletion and a partial duplication detected by MLPA. Only 22% of unrelated patients carried homozygous POR mutations. p.A287P was the most common mutation (43% of unrelated alleles); no other hot spot was identified. Urinary steroid profiling showed characteristic PORD metabolomes with variable impairment of 17α-hydroxylase and 21-hydroxylase. Short cosyntropin testing revealed adrenal insufficiency in 89%. DSD was present in 15 of 18 46,XX and seven of 12 46,XY individuals. Homozygosity for p.A287P was invariably associated with 46,XX DSD but normal genitalia in 46,XY individuals. The majority of patients with mild to moderate skeletal malformations, assessed by a novel scoring system, were compound heterozygous for missense mutations, whereas nearly all patients with severe malformations carried a major loss-of-function defect on one of the affected alleles. Conclusions: We report clinical, biochemical, and genetic findings in a large PORD cohort and show that MLPA is a useful addition to POR mutation analysis. Homozygosity for the most frequent mutation in Caucasians, p.A287P, allows for prediction of genital phenotype and moderate malformations. Adrenal insufficiency is frequent, easily overlooked, but readily detected by cosyntropin testing
    corecore